Skip to main content
Log in

Multiple Invariance MUSIC-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multi-Antenna Receiver

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems with multi-antenna receiver. The received signal can be reconstructed to form data model with multi-invariance property, and then a multi-invariance MUSIC algorithm for CFO estimation is proposed. This algorithm has better performance of CFO estimation than ESPRIT method, multi-invariance ESPRIT method and trilinear decomposition algorithm, and also qualifies the estimation for both integer CFO and fractional CFO. Simulation results illustrate validity of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ETSI. (2001). Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television, Standard ETSI EN 300 744, v1.4.1.

  2. ETSI. (2001). Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable and fixed receivers, Standard ETSI EN 300 401, v1.3.3.

  3. Moose P. H. (1994) A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications 42(10): 2908–2914

    Article  Google Scholar 

  4. Mody, A. N., & Stüber, G. L. (2001). Synchronization for MIMO OFDM systems. In Proceedings of GLOBECOM (Vol. 1, pp. 509–513). San Antonio, TX.

  5. Tureli, U., & Honan, P. J. (2001). Modified high-efficiency carrier estimator for OFDM communications with antenna diversity. In Proceedings of 35th Asilomar conference on signals, systems, and computers (Vol. 2, pp. 1470–1474). Pacific Grove, CA.

  6. Li M., Zhang W. (2003) A novel method of carrier frequency offset estimation for OFDM systems. IEEE Transactions on Consumer Electronics 49(4): 965–972

    Article  Google Scholar 

  7. Minn H., Xing S. (2005) An optimal training signal structure for frequency-offset estimation. IEEE Transactions on Communications 53(2): 343–355

    Article  Google Scholar 

  8. van de Beek J., Sandell M., Borjesson P. O. (1997) ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing 45: 1800–1805

    Article  MATH  Google Scholar 

  9. Liu H., Tureli U. (1998) A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters 2: 104–106

    Article  Google Scholar 

  10. Tureli U., Liu H., Zoltowskl M. D. (2000) OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications 48: 1459–1461

    Article  Google Scholar 

  11. Yao Y., Giannakis G. B. (2005) Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications 53(1): 173–183

    Article  MathSciNet  Google Scholar 

  12. Ghogho M., Swami A. (2002) Blind frequency-offset estimator for OFDM systems transmitting constant-modulus symbols. IEEE Communications Letters 6(8): 343–345

    Article  Google Scholar 

  13. Park B., Cheon H., Ko E. (2004) A blind OFDM synchronization algorithm based on cyclic correlation. IEEE Signal Processing Letters 11(2): 83–85

    Article  Google Scholar 

  14. Tureli U., Honan P. J., Liu H. (2004) Low-complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance. IEEE Transactions on Signal Processing 52(9): 2441–2452

    Article  Google Scholar 

  15. Zheng Z., Huang D. (2007) Robust plateau removed synchronization techniques for multiple-antenna OFDM-based DVB-H receivers. IEEE Transactions on Consumer Electronics 53(4): 1281–1287

    Article  MathSciNet  Google Scholar 

  16. Hutter, A., Hammerschmidt, J. S., de Carvalho, E., & Cioffi, J. M. (2000). Receive diversity for mobile OFDM systems. In Proceedings of IEEE WCNC (pp. 707–712).

  17. Kruskal J. B. (1977) Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics. Linear Algebra and its Applications 18: 97–138

    Article  MathSciNet  Google Scholar 

  18. Swindlehurst A. L., Stoica P., Jansson M. (2001) Exploiting arrays with multiple invariances using MUSIC and MODE. IEEE Transactions on Signal Processing 49(11): 2511–2521

    Article  Google Scholar 

  19. Roy R., Kailath T. (1989) ESPRIT—Estimation of signal parameter via rotational invariance techniques. IEEE Transactions on Signal Processing 37(7): 984–995

    Article  Google Scholar 

  20. Swindlehurst A. L., Ottersten B., Roy R., Kailath T. (1992) Multiple invariance ESPRIT. IEEE Transactions on Signal Processing 40(4): 867–881

    Article  Google Scholar 

  21. Zhang X., Gao X., Wang D. (2010) Blind carrier frequency offset estimation for OFDM system with multiple antennas using multiple-invariance properties. Wireless Personal Communications 53: 603–612

    Article  Google Scholar 

  22. Zhang X., Gao X., Xu D. (2010) Novel blind carrier frequency offset estimation for OFDM system with multiple antennas. IEEE Transactions on Wireless communications 9(3): 881–885

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Xu, L., Wang, F. et al. Multiple Invariance MUSIC-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multi-Antenna Receiver. Wireless Pers Commun 63, 319–330 (2012). https://doi.org/10.1007/s11277-010-0135-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0135-0

Keywords

Navigation