Skip to main content

Advertisement

Log in

Low-Complexity Channel Estimation Using Short-Point FFT/IFFT for an Iterative Receiver in an LDPC-Coded OFDM System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A frequency-domain channel expanding technique (FD-CET) is proposed for channel estimation in an iterative receiver of a low-density parity-check coded orthogonal frequency division multiplexing system. The FD-CET can expand a subset of the frequency-domain channel gains to all of them in a short-point FFT/IFFT format. This technique is applied to estimate the channel gains utilizing the pilots and information from the decoder in an iterative manner. It is a novel low complexity channel estimation method. Numerical results demonstrate that the proposed channel estimator approaches a maximum-likelihood performance within only a few iterations under multi-path channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallager R. G. (1963) Low-density parity check codes. MIT Press, Cambridge, MA

    Google Scholar 

  2. Richardson T., Urbanke R. (2001) The capacity of low-density parity-check codes under message-passing decoding. IEEE Transaction on Information Theory 47(2): 599–618

    Article  MathSciNet  MATH  Google Scholar 

  3. Sason I. (2009) On universal properties of capacity-approaching LDPC code ensembles. IEEE Transaction on Information Theory 55(7): 2956–2990

    Article  MathSciNet  Google Scholar 

  4. ETSI EN 302 307 (2004). Second generation framing structure, channel coding and modulation system for broadcasting, interactive services, news gathering and other broadband satellite applications. ETSI.

  5. IEEE Std. 802.16e (2006). IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems, amendment 2: Physical and medium access control layer for combined fixed and mobile operation in licensed bands. IEEE.

  6. Bennatan A., Burshtein D. (2006) Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels. IEEE Transaction on Information Theory 52(2): 549–583

    Article  MathSciNet  Google Scholar 

  7. Wachsmann U., Fischer R. F. H., Huber J. B. (1999) Multilevel codes: Theoretical concepts and practical design rules. IEEE Transaction on Information Theory 45(7): 1361–1391

    Article  MathSciNet  MATH  Google Scholar 

  8. Caire G., Taricco G., Biglieri E. (1998) Bit interleaved coded modulation. IEEE Transaction on Information Theory 44(5): 927–946

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, W., & Xiang, H. (2009). Decoding and design of LDPC codes for high-order modulations. Wireless Personal Communications. doi:10.1007/s11277-009-9830-0.

  10. Hwang T., Yang C., Wu G., Li S., Li Y. (2009) OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology 58(4): 1673–1694

    Article  Google Scholar 

  11. Wang, Y., Cao, Y., Li, X., & Yang, S. (2009). A novel transmission scheme for irregular LDPC coded OFDM system. ICIEA 2009, pp. 1351–1355

  12. Yang, C., & Ku, M. (2008). LDPC coded OFDM modulation for high spectral efficiency transmission. ECCSC 2008, pp. 280–284.

  13. Park S. Y., Kim Y. G., Kang C. G. (2004) Iterative receiver for joint detection and channel estimation in OFDM systems under mobile radio channels. IEEE Transactions on Vehicular Technology 53(2): 450–460

    Article  Google Scholar 

  14. Niu, H., & Ritcey, J. A. (2003). Iterative channel estimation and decoding of pilot symbol assisted LDPC coded QAM over flat fading channels. In: Proceeding of 37th Asilomar Conference (Vol. 2, pp. 2265–2269).

  15. Oh M. K., Kwon H. M., Park D. J., Lee Y. H. (2008) Iterative channel estimation and LDPC decoding with encoded pilots. IEEE Transactions on Vehicular Technology 57(1): 273–285

    Article  Google Scholar 

  16. Tuchler M., Singer A. C., Koetter R. (2003) Minimum mean squared error equalization using a priori information. IEEE Transactions on Signal Processing 50(3): 673–683

    Article  Google Scholar 

  17. Lipschutz, S. (1991) Schaum’s outline of theory and problems of linear algebra (2nd ed. pp. 44–45). New York: McGraw-Hill.

  18. Brigham E. O. (2002) The fast fourier transform. Prentice-Hall, New York

    Google Scholar 

  19. Ptzold M. (2002) Mobile fading channels. Wiley, Chichester, UK

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, W., Xiang, H. Low-Complexity Channel Estimation Using Short-Point FFT/IFFT for an Iterative Receiver in an LDPC-Coded OFDM System. Wireless Pers Commun 64, 739–747 (2012). https://doi.org/10.1007/s11277-010-0216-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0216-0

Keywords