Skip to main content
Log in

Wireless Innovations as Enablers for Complex & Dynamic Artificial Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Scientific and technological innovations of the last few decades in the field of wireless telecommunications and networking have enabled a wide area of applications and services in healthcare, transportation, environmental protection, infotainment, industrial automation, homeland security, smart urban environments and other disparate fields. At the same time the complexity and criticality of these systems creates many technical challenges in their design, development and operation. This paper reviews a number of important application fields of wireless communications and networking and discusses recent results, key challenges and unsolved issues in each one of them. It goes on to present some theoretical and practical issues and research directions in the field of wireless communications and networking that are common to most if not all application areas. These include theoretical link and network capacity limits, cognitive radio and cognitive networking, programming and in-field reprogramming of wireless devices, and complex system design inspired by biology and physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raychaudhuri, D. (2009). Emerging wireless technologies & the future internet. PIMRC 2009 keynote talk, http://www.winlab.rutgers.edu/~ray/PIMRC_talk_9.09.ppt.

  2. Papadopoulos, G. (2005). The future of network computing: The emergence of the aware enterprise. Sun Analysts Summit, http://wcdata.sun.com/webcast/archives/VIP-1294/VIP-1294_09.pdf.

  3. European Future Internet Portal: http://www.future-internet.eu/.

  4. US NSF-CISE FIND (Future Internet Design): http://www.nets-find.net/.

  5. Kessler A. (2006) The end of medicine: How Silicon Valley (and Naked Mice) will reboot your doctor. HarperCollins Publishers, New York

    Google Scholar 

  6. Gupta, S. K. S. (2008). Safe and dependable bio-sensor networking for pervasive healthcare. Dept. Computer Science, Arizona State University, http://impact.asu.edu/~mcn/Presentations/AYUSHMAN_BIOMED_ASU_Jan_2008_FINAL.ppt.

  7. Varshney U. (2007) Pervasive healthcare and wireless health monitoring. Mobile Network Application 12(2–3): 113–127

    Article  Google Scholar 

  8. Rashvand V. et al (2008) Ubiquitous wireless telemedicine. IET Communications 2(2): 237–254

    Article  Google Scholar 

  9. Kumar, S., et al. (2008). Ubiquitous computing for remote cardiac patient monitoring: A survey. International Journal of Telemedicine and Applications ID 459185.

  10. Venkatasubramanian, K., Deng, G., Mukherjee, T., et al. (2005). Ayushman: A wireless sensor network based health monitoring infrastructure and test-bed. In Proceedings of IEEE-DCOSS.

  11. Gatsi, F. A. (2009). Short-range wireless technologies in the healthcare infrastructure of the future. Athens Information Technology, MSITT, Graduate Project Report, September 2009.

  12. Proteus Biomedical, Ingestible sensors: http://www.proteusbiomed.com/.

  13. Patel, P. (2009). The brain-machine interface, unplugged. IEEE Spectrum pp. 9–10, October.

  14. Hanson, M., Powell, H. Jr., et al. (2009). Body area sensor networks: Challenges and opportunities. IEEE Computer Magazine pp. 58–65, January 2009.

  15. Lo, B. P. L., et al. (2004). Body sensor network—A wireless sensor platform for pervasive healthcare monitoring. SenSys ‘04.

  16. Zhen, B. (2008). IEEE body area networks and medical implant communications. In Proceedings of the ICST 3rd International Conference on Body Area Networks 2008, Tempe, Arizona, Article No. 26, ISBN: 978-963-9799-17-2.

  17. Jones V. et al (2006) MobiHealth: Mobile services for health professionals. In: Istepanian R. S. H., Laxminarayan S., Pattichis C. S. (eds) M-Health emerging mobile health systems. Springer, New York

    Google Scholar 

  18. Bults, R., et al. (2004). Body area networks for ambulant patient monitoring Over next generation public wireless networks. In Thirteenth IST Mobile and Wireless Communications Summit, 27–30 June 2004, Lyon, France. pp. 181–185.

  19. Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of Neuro-Engineering and Rehabilitation.

  20. She, H., et al. (2007). A network-based system architecture for remote medical applications. In Network Research Workshop, August 2007, Xi’an, People’s Republic of China. http://master.apan.net/meetings/xian2007/publication/101_Humin.pdf.

  21. MICS—Medical Implant Communications Service. ETSI Standard available at: http://webapp.etsi.org/action/PE/PE20090506/en_30183901v010301c.pdf.

  22. Davilis, Y., Kalis, A., & Ifantis, A. (2010). On the use of ultrasonic waves as a communications medium in biosensor networks. IEEE Transactions on Information Technology in Biomedicine. doi:10.1109/TITB.2009.2039755.

  23. Sharma, R. (2009). Low-energy wireless: Just what the doctor ordered: http://www.ecnmag.com/Articles/2009/10/Low-Energy-Wireless–Just-what-the-doctor-ordered.

  24. IEEE 802.15 TG 6: http://www.ieee802.org/15/pub/TG6.html.

  25. Taniguchi, N. (1974). On the basic concept of nano-technology. In Proceedings of the International Conference on Production Engineering.

  26. Hiyama, S., et al. (2005). Molecular communication. In Proceedings of the NSTI Nanotechnology Conference, October 2005.

  27. Akyildiz I.F., Brunetti F., Blazquez C. (2008) Nanonetworks: A new communication paradigm. Elsevier Computer Networks 52: 2260–2279

    Article  Google Scholar 

  28. AINE: http://www.asu.edu/aine/.

  29. Bio Nanorobotics Lab at NEU: http://www.bionano.neu.edu/.

  30. NANOMA: http://nanoma.zenon.gr/home.htm.

  31. Moritani, Y., Hiyama, S., & Suda, T. (2006). Molecular communication for health care applications. In Proceedings of the 4th IEEE International Conference on Pervasive Computing and Communications, (PERCOM 2006), pp. 533–549, Ubicare workshop.

  32. WINA: Wireless Industrial Networking Alliance, www.wina.org.

  33. WirelessHART (Highway Addressable Remote Transducer Protocol): www.hartcomm.org.

  34. ISA100: http://www.isa.org/Content/NavigationMenu/Technical_Information/ASCI/ISA100_Wireless_Compliance_Institute/ISA100_Wireless_Compliance_Institute.htm.

  35. 6lowpan Wireless Internet of Things: http://www.6lowpan.org/.

  36. Vassilaras S., Tsevas S., Yovanof G. S. (2008) An overview of wireless MAC protocols for vehicular communications. In: Kyriazakos S., Soldatos I., Karetsos G. (eds) 4G mobile & wireless communications technologies. River Publishers, Aalborg, Denmark

    Google Scholar 

  37. Bonivento A., Fischione C. et al (2007) System level design for clustered wireless sensor networks. IEEE Transactions on Industrial Informatics 3(3): 202–214

    Article  Google Scholar 

  38. Dedicated Short Range Communication (DSRC): http://www.standards.its.dot.gov/Documents/advisories/dsrc_advisory.htm.

  39. IEEE 1609—Family of Standards for Wireless Access in Vehicular Environments (WAVE): http://www.standards.its.dot.gov/fact_sheet.asp?f=80.

  40. DARPA Grand Challenge: http://www.darpa.mil/grandchallenge/index.asp.

  41. Olariu, S., Weigle, M. C. (eds) (2009) Vehicular networks: From theory to practice. Chapman & Hall/CRC Computer & Information Science series, Boca Raton, FL

    Google Scholar 

  42. Polastre, J. R. (2003). Design and implementation of wireless sensor networks for habitat monitoring. MS Thesis, UC Berkeley.

  43. WINSOC (Wireless Sensor Networks with Self-Organization Capabilities for Critical and Emergency Applications): www.winsoc.org.

  44. SANY (Sensors Anywhere): http://sany-ip.eu/about_sany.

  45. SCIER: http://www.scier.eu.

  46. MOBESENS (Mobility for long term water monitoring): http://www.mobesens.eu/.

  47. HydroNet (Floating Sensorised Networked Robots for Water Monitoring): http://www.hydronet-project.eu/.

  48. Nokia SensorPlanet Inititative: http://www.sensorplanet.org/.

  49. Urban Sensing project: http://research.cens.ucla.edu/projects/2006/Systems/Urban_Sensing/.

  50. MetroSense project: http://metrosense.cs.dartmouth.edu/.

  51. Personal Environmental Impact Report: http://peir.cens.ucla.edu.

  52. Shilton K. (2009) Four billion little brothers? Privacy, mobile phones, & ubiquitous data collection. Communications of the ACM 52(11): 48–53

    Article  Google Scholar 

  53. Hull, B., Bychkovsky, V., et al. (2006). CarTel: A distributed mobile sensor computing system. In Proceedings of SenSys’06.

  54. Lee, U., Magistretti, E., et al. (2006). MobEyes: Smart mobs for urban monitoring with a vehicular sensor network. IEEE Wireless Communications 13(5).

  55. Sensor Web Enablement: http://www.opengeospatial.org/projects/groups/sensorweb.

  56. Ngyen, L. T. (2006). Digital cities—Transforming the way we Live, work and play in the 21st century. Intel Vietnam.

  57. Yigitcanlar, T., Velibeyoglu, K., & Baum, S. (2008). Knowledge-based urban development: Planning and applications in the information era. Idea Group Inc.

  58. Komninos, N. (2006). The architecture of intelligent cities; Integrating human, collective, and artificial intelligence to enhance knowledge and innovation. In Proceedings of 2nd International Conf. on Intelligent Environments, Institution of Engineering and Technology, pp. 13–20.

  59. Laguerre, M. S. (2005). The digital city: The American metropolis and information technology. Ch. 7: The digital city as the virtual embodiment of the global city. New York: Palgrave McMillan.

  60. Dini, P. (2007). A scientific foundation for digital ecosystems. In: Digital business ecosystems, EC Inf. Society and Media.

  61. Yovanof, G. S., & Hazapis, G. N. (2009). An architectural framework & enabling wireless technologies for digital cities & intelligent urban environments. In M. Ruggieri & O. B. Madsen (Eds.), Springer Wireless Personal Communications Journal, Special Issue on “Global Information Multimedia Communications Village (GIMCV)”. March, 2009.

  62. Akyildiz I. F., Xudong W. (2005) A survey on wireless mesh networks. Communications Magazine, IEEE 43(9): S23–S30

    Article  Google Scholar 

  63. Karrer, R. P., Pescapé, A., & Huehn, T. (2008). Challenges in second-generation wireless mesh networks. EURASIP Journal on Wireless Communications and Networking.

  64. Curley, M. (2007). Enabling digital cities. Intel Innovation Center.

  65. Szabo, C. A. (2008). Business models and technologies for wireless community networks. Tutorial at DEST08, Phitsanulok, Thailand.

  66. Munir, S. A., Ren, B., et al., (2007). Mobile wireless sensor network: Architecture and enabling technologies for ubiquitous computing. AINAW, 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), pp. 113–120.

  67. Abdelzaher T. et al (2007) Mobiscopes for human spaces—Building a sensor rich world. IEEE Pervasive Computing 6(2): 20–29

    Article  Google Scholar 

  68. ITU-T NGN Management Focus Group (NGNMFG): http://www.itu.int/ITU-T/studygroups/com04/ngn-mfg/index.html.

  69. Intelcities, Research Project. (2004). The concept of ambient, enhanced, city service. Deliverable D1.1, Intelcities.

  70. Qian-juna, M. (2008). Research on the progress and direction of digital city. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part B4. Beijing.

  71. Mitchell, W. J.: http://cities.media.mit.edu/.

  72. World Foundation for Smart Communities http://www.smartcommunities.org/.

  73. URENIO Intelligent City Platforms: www.urenio.org/platforms/index.html.

  74. Gilder, G. (2000). The twenty laws of the telecosm. Telecosm, Free-Press: http://www.kurzweilai.net/meme/frame.html?main=/articles/art0004.html.

  75. WiseLab: http://wiselab.korea.ac.kr/data/classes/board/lecture_note1.pdf.

  76. Miller, R. R. (2005). 4G neighborhood area networks. IEEE 801.11-05/0173r0.

  77. Gupta P., Kumar P. R. (2000) The capacity of wireless networks. IEEE Transactions on Information Theory 46(2): 388–404

    Article  MATH  MathSciNet  Google Scholar 

  78. Ahlswede R., Cai N. et al (2000) Network information flow. IEEE Transactions on Information Theory 46(4): 1204–1216

    Article  MATH  MathSciNet  Google Scholar 

  79. Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless networks. IEEE INFOCOM ‘01.

  80. Li, J., Blake, C., De Couto, D. S. J., et al. (2001). Capacity of ad Hoc wireless networks. IEEE MOBICOM ‘01.

  81. Gupta P., Kumar P. R. (2003) Towards an information theory of large networks: An achievable rate region. IEEE Transactions on Information Theory 49(8): 1877–1894

    Article  MathSciNet  Google Scholar 

  82. Neely M. J., Modiano E. (2005) Capacity and delay tradeoffs for ad-hoc mobile networks. IEEE Transactions on Information Theory 51(6): 1917–1936

    Article  MathSciNet  Google Scholar 

  83. Lin X., Shroff N. B. (2006) The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE/ACM Transactions on Networking 14(2): 302–315

    Article  Google Scholar 

  84. ITMANET: Ramming, Christopher J DARPA IPTO. (2006). Information theory for mobile ad-hoc nNetworks (ITMANET) a fundamental studies: http://www.darpa.mil/IPTO/programs/itmanet/docs/ITMANET_Presentation.pdf.

  85. NEQUIT: http://wncg.ece.utexas.edu/itmanet/.

  86. FLoWS: http://www.mit.edu/~medard/itmanet/.

  87. Andrews J. G., Shakkottai S. et al (2008) Rethinking information theory for mobile ad hoc networks. IEEE Communications Magazine 46(12): 94–101

    Article  Google Scholar 

  88. McHenry M., Livsics E. et al (2007) XG dynamic spectrum access field test results. IEEE Communications Magazine 45(6): 51–57

    Article  Google Scholar 

  89. Federal Communications Commission, Spectrum Policy Task Force. Report of the Spectrum Efficiency Working Group. November 2002, available for download at http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf.

  90. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. PhD Thesis, KTH.

  91. Srinivasa S., Jafar S. A. (2007) The throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine 45(5): 221–225

    Article  Google Scholar 

  92. Cabric D., Mishra S.M., Brodersen R.W. (2004) Implementation issues in spectrum sensing for cognitive radios. In Proceeding of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers 04 1: 772–776

    Article  Google Scholar 

  93. Ghasemi A., Sousa E. S. (2008) Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine 46(4): 32–39

    Article  Google Scholar 

  94. Software Defined Radio Forum web page: http://www.sdrforum.org.

  95. Bahl, P., Chandra, R., et al. (2009). White space networking with wi-fi like connectivity. In Proceedings of ACM SIGCOMM, August 2009.

  96. Techn. Committee on Cognitive Networks—TCCN: www.eecs.ucf.edu/tccn/.

  97. Kulkarni S., Wang L. (2009) Energy-efficient multihop reprogramming for sensor networks. ACM Transactions on Sensor Network 5(2): 1–40

    Article  Google Scholar 

  98. Brown, S., & Sreenan, C. J. (2009). Software update recovery for wireless sensor networks. 1st ICST International Conference on Sensor Applications, Experimentation and Logistics (SENSAPPEAL 2009), Springer LNICST.

  99. Hadim S., & Mohamed N. (2006). Middleware for wireless sensor networks: A survey. In Proceedings of 1st International Conference on Communications System Software and Middleware (Comsware 2006), IEEE CS Press.

  100. Levis, P. & Culler, D. (2002). Mate: A tiny virtual machine for sensor networks. In Proceedings of 10th International Conference Architectural Support for Programming Languages and Operating Systems (ASPLOSX), ACM Press, pp. 85–95.

  101. Barr R. et al (2002) On the need for system-level support for ad hoc and sensor networks. Operating Systems Review 36(2): 1–5

    Article  Google Scholar 

  102. Boulis, A., Han, C.-C., & Srivastava, M. (2003). Design and implementation of a framework for efficient and programmable sensor networks. In Proceedings of MobiSys.

  103. Bonnet, P., Gehrke, J., & Seshadri, P., (2001). Towards sensor database systems. In Proceedings of 2nd International Conference on Mobile Data Management (MDM 01), pp. 314–810.

  104. Madden S. R., Franklin M. J., Hellerstein J. M. (2005) TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems 30(1): 122–173

    Article  Google Scholar 

  105. Srisathapornphat, C., Jaikaeo, C., & Shen, C. (2000). Sensor information networking architecture. In Proceedings of International Workshop Parallel Processing, IEEE CS Press, pp. 23–30.

  106. Liu, T., & Martonosi, M. (2003). Impala: A middleware system for managing autonomic, parallel sensor systems. In Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 03), 107–118.

  107. Fok, C., Roman, G., & Lu, C. (2005). Mobile agent middleware for sensor networks: An application case study. In Proceedings of 4th International Conference on Information Processing in Sensor Networks (IPSN 05), IEEE Press, pp. 382–387.

  108. Heinzelman W. B. et al (2004) Middleware to support sensor network applications. IEEE Network 18(1): 6–14

    Article  Google Scholar 

  109. Lee U., Magistretti E. et al (2009) Bio-inspired multi-agent data harvesting in a proactive urban monitoring environment. Ad Hoc Networks 7(4): 725–741

    Article  Google Scholar 

  110. Toumpis S., Tassiulas L. (2006) Optimal deployment of large wireless sensor networks. IEEE Transactions on Information Theory 52(7): 2935–2953

    Article  MathSciNet  Google Scholar 

  111. Jacquet, P. (2004). Geometry of information propagation in massively dense ad hoc networks. In Proceedings of MOBIHOC ‘04.

  112. Catanuto R., Toumpis S., Morabito G. (2009) On asymptotically optimal routing in large wireless networks and Geometrical Optics analogy. Computer Networks, Elsevier 53(11): 1939–1955

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Vassilaras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilaras, S., Yovanof, G.S. Wireless Innovations as Enablers for Complex & Dynamic Artificial Systems. Wireless Pers Commun 53, 365–393 (2010). https://doi.org/10.1007/s11277-010-9952-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-9952-4

Keywords

Navigation