Skip to main content

Advertisement

Log in

Spectrally Efficient Incremental Relaying for Coverage Expansion in Cellular Networks with Heterogeneous Path Loss Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we propose a cooperative scheme in which fixed relays operate with a higher spectral efficiency than the source. The relay transmits L times faster than the source with L times the spectral efficiency, reducing the loss inherent to the orthogonal cooperation. We assume a large scale path loss model which is capable of handling with heterogeneous conditions between the nodes of the network: the source, the relay and the base-station antennas can be at different heights. Our results show that the proposed scheme consumes less energy while achieving up to 3 dB of gain, in terms of throughput, when compared to the baseline cooperative scheme. In addition, a coverage area analysis shows that the proposed scheme increases considerably the cell area when compared to the non-cooperative transmission and to the baseline cooperative scheme. Finally, we show that the proposed scheme, with a single relay, outperforms in the high signal to noise ratio region the regular cooperative scheme using multiple relays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE Std 802.11 Std. (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

  2. IEEE Std 802.16e Std. (2009). IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems.

  3. Goldsmith A. (2005) Wireless communications (1st ed). Cambridge University Press, Cambridge

    Google Scholar 

  4. Foschini G. J. (1996) Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technology Journal 2: 41–59

    Google Scholar 

  5. Wolniansky, P., Foschini, G., Golden, G., & Valenzuela, R. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In Proceedings URSI international symposium on signals, systems, and electronics, pp. 295–300.

  6. Sellathurai M., Haykin S. (2002) Turbo-BLAST for wireless communications: Theory and experiments. IEEE Transactions on Signal Processing 50(10): 2538–2546

    Article  Google Scholar 

  7. Tarokh V., Seshadri N., Calderbank A. R. (1998) Space-time codes for high data rate wireless communication I: Performance criterion and code construction. IEEE Transactions on Information Theory 44: 744–765

    Article  MathSciNet  MATH  Google Scholar 

  8. Alamouti S. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  9. Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45: 1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  10. Zheng L., Tse D. (2003) Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory 49: 1073–1096

    Article  MATH  Google Scholar 

  11. Freitas W. C. Jr., Cavalcanti F. R. P., Lopes R. R. (2005) Hybrid transceiver schemes for spatial multiplexing and diversity in MIMO systems. SBrT/IEEE Journal of Communication and Information Systems 20(3): 63–76

    Google Scholar 

  12. Laneman J., Wornell G. (2002) Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Global Telecommunications Conference 1: 77–81

    Google Scholar 

  13. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity - part I: System description. IEEE Transactions on Communication 51(11): 1927–1938

    Article  Google Scholar 

  14. Laneman J. N., Tse D. N. C., Wornell G. W. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12): 3062–3080

    Article  MathSciNet  Google Scholar 

  15. Nosratinia A., Hunter T. E., Hedayat A. (2004) Cooperative communication in wireless networks. IEEE Communications Magazine 42(10): 74–80

    Article  Google Scholar 

  16. Bhatnagar M., Arti M., Hjørungnes A., Bose R., Song L. (2010) Multi-user relaying of high-rate space-time code in cooperative networks. Wireless Personal Communications 54: 69–81

    Article  Google Scholar 

  17. Su W., Sadek A. K., Liu K. J. R. (2008) Cooperative communication protocols in wireless networks: Performance analysis and optimum power allocation. Wireless Personal Communications 44(2): 181–217

    Article  Google Scholar 

  18. Zhao B., Valenti M. C. (2005) Practical relay networks: A generalization of hybrid-ARQ. IEEE Journal on Selected Areas in Communications 23(1): 7–18

    Article  Google Scholar 

  19. Krikidis I. (2007) Distributed truncated ARQ protocol for cooperative diversity networks. IET Communications 1(6): 1212–1217

    Article  Google Scholar 

  20. Zhang C., Wang W., Wei G. (2009) Design of ARQ protocols for two-user cooperative diversity systems in wireless networks. Elsevier Computer Communications 32(6): 1111–1117

    Google Scholar 

  21. Zheng K., Hu L., Wang W., Huang L. (2010) Performance analysis of HARQ transmission in cooperative DF relaying systems. Wireless Personal Communications 55: 441–455

    Article  Google Scholar 

  22. Sartori, P., Baum, K., Classon, B., & Cudak, M. (2005). Improving the uplink data rate of portable devices in broadband systems with relaying. In IEEE 62nd Vehicular Technology Conference, 4(25-28), 2542–2546

  23. Sadek A., Han Z., Liu K. (2010) Distributed relay-assignment protocols for coverage expansion in cooperative wireless networks. IEEE Transactions on Mobile Computing 9(4): 505–515

    Article  Google Scholar 

  24. Ichitsubo, S. (1996). 2 GHz-band propagation loss prediction in urban areas; antenna heights ranging from ground to building roof. IEICE, Technology Rep.

  25. Kramer G., Gastpar M., Gupta P. (2005) Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory 51(9): 3037–3063

    Article  MathSciNet  Google Scholar 

  26. Cover T. M., Thomas J. A. (1991) Elements of information theory (2nd ed.). Wiley, Hoboken

    Book  MATH  Google Scholar 

  27. Khormuji M., Larsson E. (2009) Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Transactions on Wireless Communications 8(4): 1716–1725

    Article  Google Scholar 

  28. Stanojev I., Simeone O., Bar-Ness Y., You C. (2006) Performance of multi-relay collaborative hybrid-ARQ protocols over fading channels. IEEE Communications Letters 10(7): 522–524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauber Gomes de Oliveira Brante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Brante, G.G., Pellenz, M.E. & Souza, R.D. Spectrally Efficient Incremental Relaying for Coverage Expansion in Cellular Networks with Heterogeneous Path Loss Conditions. Wireless Pers Commun 64, 811–829 (2012). https://doi.org/10.1007/s11277-011-0221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0221-y

Keywords

Navigation