Skip to main content
Log in

Grouping Algorithm for Partner Selection in Cooperative Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The partner selection problem for cooperative transmission is considered. Our objective is sum power minimization. We provide a simple optimal rate allocation algorithm for two cooperating node pairs and closed-form optimal rate allocations for some cases. With these results, we determine the partner for each node pair by Gabow’s Algorithm. For a large number of nodes, we propose the grouping algorithm which is near-optimal but reduces the communication and computational overhead. We show the significant improvement of power consumption by our scheme and the fast convergence of the grouping algorithm through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willems F. M. J. (1983) The discrete memoryless multiple access channel with partially cooperating encoders. IEEE Transactions on Information Theory 29(3): 441–445

    Article  MathSciNet  MATH  Google Scholar 

  2. Sendonaris, A., Erkip, E., & Aazhang, B. (1998). Increasing uplink capacity via user cooperation diversity. In Proceedings IEEE International Symposium Information Theory (p. 156). Cambridge, MA

  3. Cover T. M., Thomas J.A. (2006) Elements of information theory (2nd ed.). Wiley-Interscience, New York

    MATH  Google Scholar 

  4. Ng, C. Y., Sung, C. W., & Shum, K. W. (2007). Rate allocation for cooperative transmission in parallel channels. IEEE GLOBECOM ’07 (pp. 3921–3925).

  5. Xie L., Kumar P. R. (2004) A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory 50(5): 748–767

    Article  MathSciNet  Google Scholar 

  6. Høst-Madsen A. (2006) Capacity bounds for cooperative diversity. IEEE Transactions on Information Theory 52(4): 1522–1544

    Article  Google Scholar 

  7. Laneman J. N., Tse D. N. C., Wornell G. W. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12): 3062–3080

    Article  MathSciNet  Google Scholar 

  8. Laneman J. N., Wornell G. W. (2003) Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10): 2415–2425

    Article  MathSciNet  Google Scholar 

  9. Nostratinia A., Hunter T. E. (2007) Grouping and partner selection in cooperative wireless networks. IEEE Journal on Selected Areas in Communications 25(2): 369–378

    Article  Google Scholar 

  10. Hunter T. E., Nostratinia A. (2004) Distributed protocols for user cooperation in multi-user wireless networks. Proceedings of IEEE GLOBECOM 2004(6): 3788–3792

    Google Scholar 

  11. Mahinthan V., Cai L., Mark J. W., Shen X. (2008) Partner selection based on optimal power allocation in cooperative-diversity systems. IEEE Transactions on Vehicular Technology 57(1): 511–520

    Article  Google Scholar 

  12. Jung, Y. S., & Lee, J. H. (2006). Partner assignment algorithm for cooperative diversity in mobile communication systems. Proceedings of IEEE VTC 2006 Spring 4, 1610–1614.

  13. Han Z., Poor H. V. (2009) Coalition games with cooperative transmission: A cure for the curse of boundary bodes in selfish packet-forwarding wireless networks. IEEE Transactions on Communications 57(1): 203–213

    Article  Google Scholar 

  14. Azarian K., Gammal H. E., Schniter P. (2005) On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory 51(12): 4152–4170

    Article  Google Scholar 

  15. Brown D. R. III (2004) Resource allocation for cooperative transmission in wireless networks with orthogonal users. Proceedings of the Asilomar Conference on Signals, Systems and Computers 2: 1473–1477

    Google Scholar 

  16. Han Z., Himsoon T., Siriwongpairat W. P., Liu K. J. R. (2005) Energy-efficient cooperative transmission over multiuser of dm networks: Who helps whom and how to cooperate. Proceedings of IEEE WCNC 2005(2): 1030–1035

    Google Scholar 

  17. Kaya O., Ulukus S. (2007) Power control for fading cooperative multiple access channels. IEEE Transactions on Wireless Communications 6(8): 2915–2923

    Article  Google Scholar 

  18. Larsson E. G., Vojcic B. R. (2005) Cooperative transmit diversity based on superposition coding. IEEE Communications Letters 9(9): 778–780

    Article  Google Scholar 

  19. Tam W. P., Lok T. M., Wong T. F. (2009) Power-minimizing rate allocation in cooperative uplink systems. IEEE Transactions on Vehicular Technology 58(9): 4919–4929

    Article  Google Scholar 

  20. Siriwongpairat W. P., Sadek A. K., & Liu, K. J. R. (2006). Bandwidth-efficient ofdm cooperative protocol with applications to uwb communications. Proceedings of IEEE WCNC 2006 (pp. 1729–1734).

  21. del Coso A., Spagnolini U., Ibars C. (2007) Cooperative distributed mimo channels in wireless sensor networks. IEEE Journal on Selected Areas in Communications 25(2): 402–414

    Article  Google Scholar 

  22. Hunter T. E., Sanayei S., Nosratinia A. (2006) Outage analysis of coded cooperation. IEEE Transactions on Information Theory 52(2): 375–391

    Article  MathSciNet  Google Scholar 

  23. Levorato M., Tomasin S., Zorzi M. (2008) Cooperative spatial multiplexing for ad hocnetworks with hybrid arq: System design and performance analysis. IEEE Transactions on Communications 56(9): 1545–1555

    Article  Google Scholar 

  24. Luo, J., Blum, R. S., Greenstein, L. J., Cimini, L. J., & Haimovich, A. M. (2004). New approaches for cooperative use of multiple antennas in ad hoc wireless networks. Proceedings of IEEE VTC 2004-Fall, 4, 2629.

  25. Ribeiro A., Sidiropoulos N. D., Giannakis G. B., Yu Y. (2007) Achieving wireline random access throughput in wireless networking via user cooperation. IEEE Transactions on Information Theory 53(2): 732–758

    Article  MathSciNet  Google Scholar 

  26. Tse D., Viswanath P. (2005) Fundamentals of wireless communication. Cambridge University Press, New York, NY

    MATH  Google Scholar 

  27. Bergmans P. P., Cover T. M. (1974) Cooperative broadcasting. IEEE Transactions on Information Theory 20(3): 317–324

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu W., Varodayan D. P., Cioffi J. M. (2005) Trellis and convolutional precoding for transmitter- based interference presubtraction . IEEE Transactions on Communications 53(7): 1220–1230

    Article  Google Scholar 

  29. Erez U., Shamai S., Zamir R. (2005) Capacity and lattice strategies for canceling known interference. IEEE Transactions on Information Theory 51(11): 3820–3822

    Article  MathSciNet  Google Scholar 

  30. Wang X., Poor H. V. (1999) Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Transactions on Communications 47(7): 1046–1061

    Article  Google Scholar 

  31. Tam W. P., Lok T. M., Wong T. F. (2009) Flow optimization in parallel relay networks with cooperative relaying. IEEE Transactions on Wireless Communications 8(1): 278–287

    Article  Google Scholar 

  32. Chatterjee D., Wong T. F., Lok T. M. (2010) Cooperative transmission in a wireless relay network based on flow management. IEEE Transactions on Communications 58(10): 2816–2822

    Article  Google Scholar 

  33. Ng C. Y., Lok T. M., Wong T. F. (2010) Pricing games for distributed cooperative transmission. IEEE Transactions on Vehicular Technology 59(7): 3393–3406

    Article  Google Scholar 

  34. Boyd S., Vandenberghe L. (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Bertsekas D. P., Tsitsiklis J. N. (1989) Parallel and distributed computation numerical methods. Prentice Hall, Englewood Clifffs, New Jersey

    MATH  Google Scholar 

  36. Gabow, H. N. (1973). Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. Dissertation, Standford University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tat Ming Lok.

Additional information

This work was supported in part by the General Research Fund from the Research Grants Council, Hong Kong Special Administrative Region under Project CUHK 415608.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, C.Y., Lok, T.M. Grouping Algorithm for Partner Selection in Cooperative Transmission. Wireless Pers Commun 60, 43–67 (2011). https://doi.org/10.1007/s11277-011-0254-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0254-2

Keywords

Navigation