Skip to main content
Log in

Trilinear Decomposition-Based Two-Dimensional DOA Estimation Algorithm for Arbitrarily Spaced Acoustic Vector-Sensor Array Subjected to Unknown Locations

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper links the acoustic vector-sensor array parameter estimation problem to the trilinear model. We derive a blind two dimensional direction of arrival (DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor array at unknown location when exploiting the approach of trilinear decomposition. We present a novel method which illustrates better DOA estimation performance compared to ESPRIT algorithm. Furthermore, our algorithm requires no spectral peak searching or pair matching. Numerical results demonstrate the validity of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun G., Li Q., Zhang B. (2006) Acoustic vector sensor signal processing. Chinese Journal of Acoustics 25(1): 1–15

    MathSciNet  Google Scholar 

  2. Nehorai A., Paldi E. (1994) Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing 42(9): 2481–2491

    Article  Google Scholar 

  3. Sun G., Yang D., Zhang L. (2003) Maximum likelihood ratio detection and maximum likelihood DOA estimation based on the vector hydrophone. Acta Acustica 28(1): 66–72

    Google Scholar 

  4. Hawkes M., Nehorai A. (1998) Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Transactions on Signal Processing 46(9): 2291–2304

    Article  Google Scholar 

  5. Chen H., Zhao J. (2004) Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proceedings-Radar, Sonar & Navigation 151(3): 158–162

    Article  Google Scholar 

  6. Hochwald B., Nehorai A. (1996) Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing 44(1): 83–95

    Article  MathSciNet  Google Scholar 

  7. Wong K. T., Zoltowski M. D. (1997) Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering 22(3): 566–575

    Article  Google Scholar 

  8. Wong K. T., Zoltowski M. D. (1997) Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering 22(4): 659–672

    Article  Google Scholar 

  9. He J., Jiang S., Wang J., Liu Z. (2009) Direction finding in spatially correlated noise fields with arbitrarily-spaced and far-separated subarrays at unknown locations. IET Radar, Sonar & Navigation 3(3): 278–284

    Article  Google Scholar 

  10. Wong K. T., Zoltowski M. D. (1999) Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Transactions on Signal Processing 47(12): 3250–3260

    Article  Google Scholar 

  11. Wong K. T., Zoltowski M. D. (2000) Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE Journal of Oceanic Engineering 25(2): 262–273

    Article  Google Scholar 

  12. Wang, Y., Zhang, J., Hu, B., & He, J. (2008). Hypercomplex model of acoustic vector sensor array with its application for the high resolution two dimensional direction of arrival estimation. In Proceedings of the IEEE instrumentation & measurement technology conference (IMTC’ 2008) (pp. 1–5). Victoria, BC.

  13. Yuan, Y., Zhang, B., Fan, D., & Tong, G. (2008). DFT and PSD for estimating DOA with an active acoustic array. In IEEE international conference on automation & logistics (ICAL’ 2008) (pp. 694–699).

  14. Arunkumar, K. P., & Anand, G. V. (2007). Multiple source localization in shallow ocean using a uniform linear horizontal array of acoustic vector sensors. In 2007 IEEE intelligent information communication technologies for better human life (TENCON 2007) (pp. 1–4). Taibei, China.

  15. Tam P. K., Wong K. T. (2009) Cramer-Rao Bounds for direction finding by an acoustic vector sensor under nonideal gain-phase responses. IEEE Sensors Journal 9(8): 969–982

    Article  Google Scholar 

  16. Abdi A., Guo H. (2009) Signal correlation modeling in acoustic vector sensor arrays. IEEE Transactions on Signal Processing 57(3): 892–903

    Article  Google Scholar 

  17. Hawkes M., Nehorai A. (2003) Wideband source localization using a distributed acoustic vector-sensor array. IEEE Transactions on Signal Processing 51(6): 1479–1491

    Article  MathSciNet  Google Scholar 

  18. Nan, Z., Swee, C. C., & Chew, B. A. L. (2007) Vector hydrophone array development and its associated DOA estimation algorithms. In Proceedings of 2006 Asia Pacific OCEANS (pp. 1–5). Singapore.

  19. Kruskal J. B. (1977) Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications 18: 95–138

    Article  MathSciNet  MATH  Google Scholar 

  20. De Lathauwer L., De Moor B., Vandewalle M. J. (2004) Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition. SIAM Journal on Matrix Analysis and Applications 26(2): 295–327

    Article  MathSciNet  MATH  Google Scholar 

  21. De Lathauwer L. (2006) A link between the canonical decomposition in multi-linear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications 28(3): 642–666

    Article  MathSciNet  MATH  Google Scholar 

  22. Sidiropoulos N. D., Giannakis G. B., Bro R. (2000) Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing 48(3): 810–823

    Article  Google Scholar 

  23. Sidiropoulos N. D., Dimic G. Z. (2001) Blind multiuser detection in W-CDMA systems with large delay spread. IEEE Signal Processing Letters 8(3): 87–89

    Article  Google Scholar 

  24. Sidiropoulos N. D., Bro R., Giannakis G. B. (2000) Parallel factor analysis in sensor array processing. IEEE Transactions on Signal Processing 48(8): 2377–2388

    Article  Google Scholar 

  25. Rong Y., Vorobyov S. A., Gershman A. B., Sidiropoulos N. D. (2005) Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Transactions on Signal Processing 53(5): 1697–1710

    Article  MathSciNet  Google Scholar 

  26. Sidiropoulos N. D., Liu X. (2001) Identifiability results for blind beamforming in incoherent multipath with small delay spread. IEEE Transactions on Signal Processing 49(1): 228–236

    Article  Google Scholar 

  27. Zhang, X., & Xu, D. (2007). Blind PARAFAC signal detection for polarization sensitive array. EURASIP Journal on Advances in Signal Processing, 2007(article id 12025), 1–7. doi:10.1155/2007/12025.

  28. Zhang X., Shi Y., Xu D. (2008) Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array. Progress in Electromagnetics Research: PIER 86: 19–37

    Article  Google Scholar 

  29. De Baynast, A., De Lathauwer, L., & Aazhang, B. (2003). Blind PARAFAC receivers for multiple access-multiple antenna systems. In IEEE 58th vehicular technology conference (pp. 1128–1132).

  30. Yu, Y., & Petropulu, A. P. (2006). PARAFAC based blind estimation of MIMO systems with possibly more inputs than outputs. IEEE international conference on acoustics, speech and signal processing (ICASSP’ 06) (pp. 133–136).

  31. Liu X., Sidiropoulos N. D., Swami A. (2002) Blind high-resolution localization and tracking of multiple frequency hopped signals. IEEE Transactions on Signal Processing 50(4): 889–901

    Article  Google Scholar 

  32. Zhang X., Xu D. (2009) Novel joint time delay and frequency estimation method. IET Radar, Sonar & Navigation 3(2): 186–194

    Article  Google Scholar 

  33. Vorobyov S. A., Rong Y., Sidiropoulos N. D. (2005) Robust iterative fitting of multilinear models. IEEE Transactions on Signal Processing 53(8): 2678–2689

    Article  MathSciNet  Google Scholar 

  34. Bro, R., Sidiropoulos, N. D., & Giannakis, G. B. (1999). A fast least squares algorithm for separating trilinear mixtures. In Proceedings of the International Workshop ICA and BSS (pp. 289–294). France.

  35. Stoica P., Nehorai A. (1990) Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Signal Processing 38: 1783–1795

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, J., Chen, H. et al. Trilinear Decomposition-Based Two-Dimensional DOA Estimation Algorithm for Arbitrarily Spaced Acoustic Vector-Sensor Array Subjected to Unknown Locations. Wireless Pers Commun 67, 859–877 (2012). https://doi.org/10.1007/s11277-011-0415-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0415-3

Keywords

Navigation