Skip to main content
Log in

Geometry-Based Doppler Analysis for GPS Receivers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the Doppler shift due to satellite vehicle motion in Global Positioning System (GPS) is investigated via a computational geometric analysis for a stationary GPS receiver, which resides on the surface of the earth. For an in-plane stationary receiver, the Doppler shift is derived as a function of the satellite vehicle’s central angle. For an off-plane stationary receiver, the visible region is calculated as a function of the elevation angle and the Doppler shift is derived as a function of the central angle and of the elevation angle. Also, the difference between the Doppler shift corresponding to an off-plane stationary receiver and the Doppler shift corresponding to an in-plane stationary receiver is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misra P. (2006) Global positioning system: Signals, measurements, and performance (2nd ed.). Ganga-Jamuna Press, Lincoln, MA

    Google Scholar 

  2. Yu K., Ian S., Guo Y. (2009) Ground-based wireless positioning. Wiley-IEEE Press, West Sussex

    Book  Google Scholar 

  3. Wang D. (2011) Wireless location: Raning, positioning and sytstems using multi-carrier transmission. LAMBERT Academic Publishing, Germany

    Google Scholar 

  4. Zhao G., Wang D., Fattouche M. (2011) Time sum of arrival based BLUE for mobile target positioning. Advanced Scienced Letters 4(1): 165–167

    Article  Google Scholar 

  5. Wang D., Fattouche M. (2010) OFDM transmission for time-based range estimation. IEEE Signal Processing Letters 17(6): 571–574

    Article  Google Scholar 

  6. Wang D., Fattouche M. (2010) Multipath mitigation for LOS TBRE using NDB OFDM transmission and phase correlation. IET Electronics Letters 46(21): 1467–1468

    Article  Google Scholar 

  7. Zhao, G., Wang, D., Fattouche, M., & Jin, M. (2011). Novel wireless positioning system for OFDM-based cellular networks. IEEE Systems Journal (accepted).

  8. Dai L., Wang Z., Wang J., Yang Z. (2010) Positioning with OFDM signals for the next-generation GNSS. IEEE Transactions on Consumer Electronics 56(2): 374–379

    Article  Google Scholar 

  9. Leick A. (2004) GPS satellite surveying (3rd ed.). Wiley, Hoboken, NJ

    Google Scholar 

  10. WIKIPEDIA: GPS signals. (2011). http://en.wikipedia.org/wiki/GPS-signals.

  11. GPS NAVSTAR. (1995). Global positioning system standard positioning service signal specification. http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf.

  12. Manadhar, D., Suh, Y., & Shibasak, R. (2004) GPS signal acquisition and tracking—an approach towards development of software-based GPS receiver. Technical report of IEICE ITS 2004-16.

  13. Hyun, C. S., Hyun, K. J., & Shin, C. S., et al. (2008). Acquisition and tracking schemes for a GPS L5 receiver. In Proceedings of international conference of control, automation and systems (pp. 2214–2217).

  14. Bao J., Tsui Y. (2005) Fundamentals of global positioning system receivers: A software approach (2nd ed.). Willey, London

    Google Scholar 

  15. Borre K., Akos D. M., Bertelsen N., Rinder P., Jensen S. H. (2007) A software-defined GPS and Galileo receiver. Birkhauser, Boston

    MATH  Google Scholar 

  16. Normark, P.-L., & Stahlberg, C., (2005). Hybrid GPS/Galileo real time software receiver. In Proceedings of ION GNSS (pp. 1–8).

  17. Ando, H. (1993). GPS Satellite signal tracking system for GPS receivers. US Patent 5177490.

  18. He S., Doroslovacki M., Guo Z., Zhang Y. (2003) Attitude rate estimation by GPS Doppler signal processing. Journal of Electronics 20: 13–19

    Google Scholar 

  19. Wolf, M. (1991). Receiver for Bandspread signals, particularly GPS receiver. US Patent 5016257.

  20. Featherstone S. (2004) Outdoor guide to using your GPS. Creative Publishing, Minneapolis

    Google Scholar 

  21. El-Rabbany A. (2007) Introduction to GPS: The global positioning system. Artech House, Norwood, MA

    Google Scholar 

  22. Sweet R. J. (2003) GPS for mariners. McGraw-Hill, New York

    Google Scholar 

  23. Bossler, J. D., Jensen, J. R., McMaster, R. B., & Rizos, C. (2002). Manual of geospatial science and technology. (pp. 96–96). Boa Raton: CRC Press

  24. Kaplan E. D., Hegarty C. J. (2006) Understanding GPS: Principles and applications (2nd ed.). Artech House, London

    Google Scholar 

  25. Wang, D., Leung, H., Fattouche, M., & Ghannouchi, F. M. (2011). Efficient spectrum allocation and TOA-based localization in cognitive networks. Wireless Personal Communications, Springer. doi:10.1007/s11277-011-0365-9.

  26. Zhao, G., Wang, D., Fattouche, M., & Jin, M. (2011). A novel OFDM-based wireless positioning protocol for cellular networks. ICIC Express Letters, 5(4B), 1207–1212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Fattouche, M. & Ghannouchi, F. Geometry-Based Doppler Analysis for GPS Receivers. Wireless Pers Commun 68, 1–13 (2013). https://doi.org/10.1007/s11277-011-0435-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0435-z

Keywords

Navigation