Skip to main content
Log in

Multi-user Multi-stream Vector Perturbation Precoding

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vector perturbation (VP) is a prominent precoding technique attracted a lot of attention in recent years. Till now, however, various extended VP techniques are almost restricted to one antenna configuration of each user, termed as multi-user single-stream VP, which contradicts with the multi-antenna terminals of the next generation wireless systems. So, the popular block diagonal (BD) algorithm and VP was naturally combined and proposed to solve this problem. However, the so-called BD-VP completely suppresses multi-user interference at the expense of noise enhancement and results in performance degradation. To overcome the shortcoming of BD-VP, we propose three criteria based multi-user multi-stream VP (MUMS-VP) algorithms with different performance and complexity tradeoffs: zero-forcing expanded channel inversion (ZF ECI)-VP algorithm, minimum-total-mean-square-error criterion (MTMSE) based two MUMS-VP algorithms and maximum signal-to-leakage-and-noise-ratio (MSLNR) criterion based MUMS-VP algorithm. The general expression of achievable rates of MUMS-VP algorithms is derived. Analysis and simulation results show that the proposed ZF MUMS-VP is equivalent to BD-VP, while MTMSE MUMS-VP II has the maximum achievable sum rates among these algorithms. MTMSE MUMS-VP I, II and MSLNR MUMS-VP greatly outperform BD-VP in BER performance for both fixed modulation scenario and adaptive modulation scenario. Furthermore, all proposed algorithms have much lower complexity than BD-VP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caire G., Shamai S. (2003) On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory 43(7): 1691–1706

    Article  MathSciNet  Google Scholar 

  2. Vishvanath S., Jindal N., Goldsmith A. (2003) Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Transactions on Information Theory 49(10): 2658–2668

    Article  Google Scholar 

  3. Weingarten H., Steinberg Y., Shamai S. (2006) The capacity region of the Gaussian MIMO broadcast channel. IEEE Transactions on Information Theory, 52(9): 3936–3964

    Article  MathSciNet  Google Scholar 

  4. Peel C. B., Hochwald B. M., Swindlehurst A. L. (2005) A vector-perturbation technique for near-capacity multiantenna multiuser communication—part I: Channel inversion and regularization. IEEE Transactions on Communications 53(1): 195–202

    Article  Google Scholar 

  5. Dabbagh A. D., Love D. J. (2008) Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch. IEEE Transactions on Communications 56(11): 1859–1868

    Article  Google Scholar 

  6. Fischer, R. F. H. (2002). Precoding and signal shaping for digital transmission. IEEE, Wiley-Interscience.

  7. Windpassinger C., Fischer R. F. H., Vencel T., Huber J. B. (2004) Precoding in multiantenna and multiuser communications. IEEE Transactions on Wireless Communications 3(4): 1305–1316

    Article  Google Scholar 

  8. D’Amico A. (2008) Tomlinson Harashima precoding in MIMO systems: A unified approach to transceiver optimization based on multiplicative Schur convexity. IEEE Transactions on Signal Processing 56(83): 3662–3677

    Article  MathSciNet  Google Scholar 

  9. Hochwald M., Peel C. B., Swindlehurst A. L. (2005) A vectorperturbation technique for near capacity multiantenna multiuser communication—part II: Perturbation. IEEE Transactions on Communications 53(3): 537–544

    Article  Google Scholar 

  10. Windpassinger C., Fischer R. F. H., Huber J. B. (2004) Lattice-reduction-aided broadcast precoding. IEEE Transactions on Communications 52(12): 2057–2060

    Article  Google Scholar 

  11. Windpassinger, A., & Fischer, R. F. H. (2003). Low-complexity near maximum-likelihood detection and precoding for MIMO systems using lattice reduction. In Proceedings of information theory workshop (pp. 345–348). Munich, Germany, March 31–April 4, 2003.

  12. Stierstorfer C., Fischer R. F. H. (2006) Lattice-reduction-aided Tomlinson–Harashima precoding for point-to-multipoint transmission. International Journal of Electronics and Communications (AEÜ) 60: 328–330

    Article  Google Scholar 

  13. Schmidt D. A., Joham M., Utschick W. (2008) Minimum mean square error vector precoding. European Transactions on Telecommunications 19: 219–231

    Article  Google Scholar 

  14. Han, H., Park, S., & Lee, I. (2009). Improved vector perturbation with modulo loss reduction for multiuser downlink systems. In Proceedings of IEEE international conference on comunications (ICC’09), June 14–18, Dresden, Germany.

  15. Lu, P., & Yang, H. (2009). Vector perturbation precoding for MIMO broadcast channel with quantized channel feedback. In Proceedings of IEEE global communications conference (GLOBECOM’09), Hawaii, USA, November 30–December 4, 2009.

  16. Mauren, J., Jalden, J., Seethaler, D., & Matz, G. (2009). Vector perturbation precoding for receivers with limited dynamic range. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP’09), Taipei, April 19–24, 2009.

  17. Lee, B., & Shim, B. (2010). A vector perturbation with virtual users for multiuser MIMO downlink. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP’10), Dallas, Texas, USA, March 14–19, 2010.

  18. Han, H., Park, S., & Lee, I. (2010). Decoupled search for vector perturbation in multiuser downlink systems. In Proceedings of IEEE international conference on comunications (ICC’10), May 23–27, Cape Town, South Africa.

  19. Ryan, D. J. (2010). Space time vector perturbation precoding. In Proceedings of IEEE international conference on comunications (ICC’10), May 23–27, Cape Town, South Africa.

  20. Spencer Q. H., Swindlehurst A. L., Haardt M. (2004) Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing 52(2): 461–471

    Article  MathSciNet  Google Scholar 

  21. Choi L.-U., Murch R. D. (2004) A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Transactions on Wireless Communications 3(1): 20–24

    Article  Google Scholar 

  22. Pan Z., Wong K.-K., Ng T.-S. (2004) Generalized multiuser orthogonal space-division multiplexing. IEEE Transactions on Wireless Communications 3(6): 1969–1973

    Article  Google Scholar 

  23. Chae C.-B., Shim S., Heath R. W. (2008) Diagonalized vector perturbation for multiuser MIMO systems. IEEE Transactions on Wireless Communications 7(11): 4051–4057

    Article  Google Scholar 

  24. Sung H., Lee S.-R., Lee I. (2009) Generalized channel inversion methods for multiuser MIMO systems. IEEE Transactions on Communications 57(11): 3489–3499

    Article  Google Scholar 

  25. Palomar, D. P. (2003). A unified framework for communications through MIMO channels. Ph.D. dissertation, Technical University of Catalonia (UPC), Barcelona, Spain, May 2003.

  26. Zhang J., Wu Y., Zhou S., Wang J. (2005) Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems. IEEE Communication Letters 9(11): 991–993

    Article  Google Scholar 

  27. Agrell E., Eriksson T., Vardy A., Zeger K. (2002) Closest point search in lattices. IEEE Transactions on Information Theory 48(8): 2201–2214

    Article  MathSciNet  MATH  Google Scholar 

  28. Schnorr C. P., Euchner M. (1994) Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming 66: 181–191

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenstra A. K., Lenstra H. W., Lovász L. (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261: 515–534

    Article  MathSciNet  MATH  Google Scholar 

  30. Gan, Y. H., & Mow, W. H. (2005). Complex lattice reduction algorithms for low-complexity MIMO detection. In Proceedings of IEEE global communications conference (GLOBECOM’05), St. Louis, MO, USA, November 28–December 2, 2005.

  31. Lee K., Chun J. (2007) Symbol detection in V-BLAST architectures under channel estimation errors. IEEE Transactions on Wireless Communications 6(2): 593–597

    Article  MathSciNet  Google Scholar 

  32. Sadek M., Tarighat A., Sayed A. H. (2007) Active antenna selection in multi-user MIMO communications. IEEE Transactions on Signal Processing 55(4): 1498–1510

    Article  MathSciNet  Google Scholar 

  33. Sadek M., Tarighat A., Sayed A. H. (2007) A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Transactions on Wireless Communications 6(5): 1711–1721

    Article  Google Scholar 

  34. Schubert M., Boche H. (2004) Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Transactions on Vehicular Technology 53(1): 18–28

    Article  Google Scholar 

  35. Chen, R., Li, J.-D., & Liu, W. et al. (2010). A practical scheme for CSI mismatch in limited feedback MIMO joint transceiver design. In Proceedings of IEEE international conference on communications systems (ICCS’10), November 17–20, 2010, Singapore.

  36. Golub G. H., Loan C. F. V. (1989) Matrix computations. (3rd ed.). The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Li, J., Li, C. et al. Multi-user Multi-stream Vector Perturbation Precoding. Wireless Pers Commun 69, 335–355 (2013). https://doi.org/10.1007/s11277-012-0576-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0576-8

Keywords

Navigation