Skip to main content

Advertisement

Log in

Development of a Hybrid Algorithm for Efficient Optimisation of Base Station Placement for Indoor Wireless Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new hybrid algorithm termed Reduction EstimationCombinatorial OptimisationReduction Approximation is proposed to identify an optimal base station placement as a subset of a known set of potential sites to provide wireless communication services to a given set of stationary users. Both forward and reverse link signal-to-interference ratios are considered, and the performance of the proposed algorithm is reported for several representative case studies and compared with Brute Force Search and existing optimisation algorithms (including Genetic, Ngadiman and Greedy algorithms). For the cases considered, the proposed algorithm is found to be superior to the existing algorithms in that it can yield an optimal deployment (equivalent to Brute Force Search) in an acceptable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong J. K. L., Mason A. J., Neve M. J., Sowerby K. W. (2006) Base station placement in indoor wireless systems using binary integer programming. IEE Proceedings Communications 153: 771–778

    Article  Google Scholar 

  2. Chevallier, C., Brunner, C., Garavaglia, A., Murray, K. P., Baker, K. R. (eds) (2006) WCDMA (UMTS) deployment handbook: Planning and optimisation aspects. Wiley, New York

    Google Scholar 

  3. Neve, M. J., & Sowerby, K. W. (1999). Optimising the performance of indoor wireless communications systems. In Proceeding of IEEE vehicular technology conference (pp. 968–972).

  4. Krishnamachari, B., & Wicker, S. B. (2000). Optimization of fixed network design in cellular systems using local search algorithms. In Proceeding of IEEE 52nd vehicular technology conference (Vol. 4, pp. 1632–1638).

  5. Krishnamachari, B., & Wicker, S. B. (2000). Experimental analysis of local search algorithms for optimal base station location. In Proceeding of international conference on evolutionary computing for computer communicaitons control and power, ECCAP.

  6. Ji Z., Sarkar T. K., Li B. (2002) Methods for optimizing the location of base stations for indoor wireless communications. IEEE Transactions on Antennas and Propagation 50: 1481–1483

    Article  Google Scholar 

  7. Lee C., Kang H. (2000) Cell planning with capacity expansion in mobile communications: A tabu search approach. IEEE Transactions on Vehicular Technology 49: 1678–1691

    Article  Google Scholar 

  8. Rambally, R. S., & Maharajh, A. (2009). Cell planning using genetic algorithm and tabu search. In Proceeding of second international conference on the applications of digital information and web technologies, ICADIWT (pp. 640–645).

  9. Fortune S.F., Gay D.M., Kernighan B.W., Landron O., Valenzuela R.A., Wright M.H. (1995) WISE design of indoor wireless systems: Practical computation and optimization. IEEE Computational Science and Engineering 2: 58–68

    Article  Google Scholar 

  10. Wright, M. H. (1998). Optimization methods for base station placement in wireless applications. In Proceeding of IEEE 48th vehicular technology conference (Vol. 1, pp. 378–391).

  11. Tutschku, K., Leibnitz, K., & Tran-Gia, P. (1997). ICEPT—an integrated cellular network planning tool. In Proceeding of IEEE 47th vehicular technology conference (Vol. 2, pp. 765–769).

  12. Tutschku K., Tran-Gia P. (1998) Spatial traffic estimation and characterization for mobile communication network design. IEEE Selected Areas in Communications 16: 804–811

    Article  Google Scholar 

  13. Fruhwirth T., Brisset P. (2000) Placing base stations in wireless indoor communication networks. IEEE Intelligent Systems 15: 49–53

    Article  Google Scholar 

  14. Molina, A., Athanasiadou, G. E., & Nix, A. R. (1999). The automatic location of base-stations for optimised cellular coverage: a new combinatorial approach. In Proceeding of IEEE vehicular technology conference (Vol. 1, pp. 606–610).

  15. Molina, A., Nix, A. R., & Athanasiadou, G. E. (2000). Cellular network capacity planning using the combination algorithm for total optimisation. In Proceeding of IEEE 51st vehicular technology conference (Vol. 3, pp. 2512–2516).

  16. Amaldi E., Capone A., Malucelli F. (2003) Planning UMTS base station location: Optimization models with power control and algorithms. IEEE Transactions on Wireless Communications 2: 939–952

    Article  Google Scholar 

  17. Amaldi E., Capone A., Malucelli F. (2008) Radio planning and coverage optimization of 3G cellular networks. Wireless Networks 14: 435–447

    Article  Google Scholar 

  18. Wong J. K. L., Neve M. J., Sowerby K. W. (2001) Optimisation strategy for wireless communications system planning using linear programming. Electronics Letters 37: 1086–1087

    Article  Google Scholar 

  19. Wong, J. K. L. (2007). Automatic planning and optimisation of in-building CDMA systems. PhD thesis, New Zealand: The University of Auckland.

  20. Ngadiman, Y., Chew, Y. H., & Yeo, B. S. (2005). A new approach for finding optimal base stations configuration for CDMA systems jointly with uplink and downlink constraints. In Proceeding of IEEE international symposium on personal industrial mobile radio communications, PIMRC (pp. 2751–2755).

  21. Whitaker, R. M., Hurley, S., & Allen, S. M. (2007). Sensitivity of service coverage evaluation for WCDMA systems. In Proceeding of wireless telecommunications symposium, WTS (pp. 1–10).

  22. Khalek A. A., Al-Kanj L., Dawy Z., Turkiyyah G. (2011) Optimization models and algorithms for joint uplink/downlink UMTS radio network planning with SIR-based power control. IEEE Transactions on Vehicular Technology 60: 1612–1625

    Article  Google Scholar 

  23. Sharma, S., Tameh, E., Molina, A., & Nix, A. R. (2002). Automated W-CDMA microcellular deployment and coverage reconfiguration based on situation awareness. In Proceeding of IEEE 55th vehicular technology conference.

  24. Wong, J. K. L., Neve, M. J., & Sowerby, K. W. (2003). Uplink and downlink SIR analysis for base station placement. In Proceeding of IEEE vehicular technology conference (Vol. 1, pp. 112–116).

  25. Wong, J. K. L., Neve, M. J., & Sowerby, K. W. (2006). Optimisation of a multi-code CDMA in-building communication system. In Proceeding of IEEE vehicular technology conference (pp. 846–850).

  26. Tudzarov A., Janevski T. (2011) Design for 5G mobile network architecture. International Journal of Communication Networks and Information Security (IJCNIS) 3: 112–123

    Google Scholar 

  27. Pais, A. V. (2007). The deployment and performance of indoor/outdoor DS-CDMA systems with multiuser detection. PhD thesis. New Zealand: The University of Auckland.

  28. Collette Y., Siarry P. (2003) Multiobjective optimization. Springer, Berlin

    Google Scholar 

  29. Munyaneza, J., Kurien, A., & Wyk, B. V. (2008). Optimization of antenna placement in 3G networks using genetic algorithms. In Proceeding of third international conference on broadband communications, information technology & biomedical applications (pp. 30–37).

  30. Tolstrup M. (2008) Indoor radio planning: A practical guide for GSM, DCS, UMTS and HSPA. Wiley, New York

    Book  Google Scholar 

  31. Holma, H., Toskala, A. (eds) (2001) WCDMA for UMTS: Radio access for third generation mobile communications. Wiley, New York

    Google Scholar 

  32. Janevski T. (2003) Traffic analysis and design of wireless IP networks. Artech House, Boston

    Google Scholar 

  33. Nagy, L., & Farkas, L. (2000). Indoor base station location optimization using genetic algorithms. In Proceeding of IEEE international symposium on personal industrial mobile radio communications (Vol. 2, pp. 843–846).

  34. Pujji, L. K., Sowerby, K. W., & Neve, M. J. (2009). A new algorithm for efficient optimisation of base station placement in indoor wireless communication systems. In Proceeding of communicaitons networks and services research conference, CNSR (pp. 425–427).

  35. Vanhatupa, T., Hannikainen, M., & Hamalainen, T. (2007) Genetic algorithm to optimize node placement and configuration for WLAN planning. In Proceeding of international symposium on wireless communications systems, ISWCS.

  36. Levitin A. (2003) Introduction to the design and analysis of algorithms. Addison Wesley, Reading

    Google Scholar 

  37. Beightler C. S., Phillips D. T., Wilde D. J. (1979) Foundations of optimisation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  38. Runhua, C., Andrews, J. G., & Heath, R. W. (2007). Efficient transmit antenna selection for multiuser MIMO systems with block diagonalization. In Proceeding of IEEE global telecommunications conference, GLOBECOM (pp. 3499–3503).

  39. Resende, M. (1998). Greedy randomized adaptive search procedures (GRASP). tech. rep., AT&T Labs Research Technical Report: 98.41.1.

  40. Sobczyk, A. (2004). Practical approach to the selection process of WCDMA BS locations at the constraints of a current 2G network operator. In Proceeding of IEEE vehicular technology conference (Vol. 4, pp. 2296–2302).

  41. Kim, S., Ko, J., Yoon, J., & Lee, H. (2007). Multiple-objective metric for placing multiple base stations in wireless sensor networks. In Proceeding of IEEE 2nd international symposium on wireless pervasive computing, ISWPC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza K. Pujji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujji, L.K., Sowerby, K.W. & Neve, M.J. Development of a Hybrid Algorithm for Efficient Optimisation of Base Station Placement for Indoor Wireless Communication Systems. Wireless Pers Commun 69, 471–486 (2013). https://doi.org/10.1007/s11277-012-0584-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0584-8

Keywords

Navigation