Skip to main content
Log in

A Comparative Study of Different Entropies for Spectrum Sensing Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose entropy-based spectrum sensing schemes to detect the existence of a primary user in Cognitive Radio (CR). To support this proposal, we have studied four types of entropies [Approximate Entropy (ApEn), Bispectral Entropy (BispEn), Sample Entropy (SamEn) and Rényi Entropy (RenyiEn)] and their applications for spectrum sensing. The reason for investigating these entropies comes from the fact that different types of entropies have different characteristics which make them more or less suitable for specific applications. Monte Carlo simulations were executed to find out how suitable these measures are for CR. Averaged value curves, boxplots and Analysis of Variance (ANOVA) tests document the performance of these types of entropies. The results show that BispEn outperformed the other three entropy measures. The ANOVA test shows that BispEn can sense modulated signals when the (SNR) is as low as −15 dB. This is at least a 5 dB improvement compared to the other entropies studied in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AWGN:

Additive White Gaussian Noise

ANOVA:

Analysis of Variance

ApEn:

Approximate Entropy

ASK:

Amplitude-shift keying

BispEn:

Bispectral Entropy

CR:

Cognitive Radio

EEG:

Electroencephalography

FCC:

Federal Communications Commission

HRV:

Heart Rate Variability

RenyiEn:

Rényi Entropy

RRC:

Root-raised Cosine

SamEn:

Sample Entropy

SNR:

Signal to Noise Ratio

OFDM:

Orthogonal Frequency-division Multiplexing

References

  1. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. Selected Areas in Communications, IEEE Journal on 23(2): 201–220

    Article  Google Scholar 

  2. Sridhara K., Chandra A., Tripathi P. (2008) Spectrum challenges and solutions by cognitive radio: An overview. Wireless Personal Communications 45: 281–291

    Article  Google Scholar 

  3. Federal Communications Commission. (2005). Notice of proposed rule making and order: Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. ET Docket No. 03-108

  4. Gavrilovska L., Atanasovski V. (2011) Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications 59: 447–469

    Article  Google Scholar 

  5. Budiarjo I., Lakshmanan M., Nikookar H. (2008) Cognitive radio dynamic access techniques. Wireless Personal Communications 45: 293–324

    Article  Google Scholar 

  6. Yucek T., Arslan H. (2009) A survey of spectrum sensing algorithms for cognitive radio applications. Communications Surveys Tutorials IEEE 11(1): 116–130

    Article  Google Scholar 

  7. Nagaraj S. V. (2009) Entropy-based spectrum sensing in cognitive radio. Signal Processing 89(2): 174–180

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang Y., Zhang Q., Wu S. (2010) Entropy-based robust spectrum sensing in cognitive radio. Communications, IET 4(4): 428–436

    Article  Google Scholar 

  9. Zhang Y. L., Zhang Q. Y., Melodia T. (2010) A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. Communications Letters, IEEE 14(6): 533–535

    Article  Google Scholar 

  10. Proakis J. G., Salehi M. (2008) Digital communications, 5th edn. McGraw Hill, NY

    Google Scholar 

  11. Harris R. J. (1994) ANOVA: An analysis of variance primer. F E Peacock Pub, Itasca

    Google Scholar 

  12. The MathWorks Inc. (2007). MATLAB version 7.4.0 (R2007a).

  13. Fishman G. S. (1995) Monte Carlo: Concepts, algorithms, and applications. Springer, New York

    Google Scholar 

  14. Pincus S. M. (1995) Approximate entropy (ApEn) as a complexity measure. Chaos 5(1): 110–117

    Article  MathSciNet  Google Scholar 

  15. Bein B. (2006) Entropy. Best Practice and Research Clinical Anaesthesiology 20(1): 101–109

    Article  MathSciNet  Google Scholar 

  16. Faust O., Acharya U.R., Molinari F., Chattopadhyay S., Tamura T. (2012) Linear and non-linear analysis of cardiac health in diabetic subjects. Biomedical Signal Processing and Control 7(3): 295–302

    Article  Google Scholar 

  17. Richman J. S., Moorman J. R. (2000) Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology. Heart and Circulatory Physiology 278(6): H2039–2049

    Google Scholar 

  18. Al-Angari H. M., Sahakian A. V. (2007) Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. Biomedical Engineering, IEEE Transactions on 54(10): 1900–1904

    Article  Google Scholar 

  19. Rényi, A. (1960). On Measures Of Entropy And Information. In Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability, (pp. 547–561).

  20. Tabatabaei, T. S., Krishnan, S., & Anpalagan, A. (2010). SVM-based classification of digital modulation signals. Systems man and cybernetics (SMC), 2010 IEEE international conference on (pp. 277–280).

  21. Nikias C. L., Raghuveer M. R. (1987) Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE 75(7): 869–891

    Article  Google Scholar 

  22. Mohebbi M., Ghassemian H. (2012) Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Computer Methods and Programs in Biomedicine 105(1): 40–49

    Article  Google Scholar 

  23. Bao M., Zheng C., Li X., Yang J., Tian J. (2009) Acoustical vehicle detection based on bispectral entropy. Signal Processing Letters, IEEE 16(5): 378–381

    Article  Google Scholar 

  24. Tukey J. W. (1977) Exploratory data analysis. Addison-Wesley, New York

    MATH  Google Scholar 

  25. Fisher R. A. (1918) The correlation between relatives on the supposition of mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburgh 52: 399–433

    Article  Google Scholar 

  26. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423; 623–656.

    Google Scholar 

  27. Renevey, P., & Drygajlo, A. (2001). Entropy based voice activity detection in very noisy conditions. In Proceedings of 7th European conference on speech communication and technology, EUROSPEECH’2001, (pp. 1887–1890).

  28. Zhang Q. T. (1989) An entropy-based receiver for the detection of random signals and its application to radar. Signal Processing 18(4): 387–396

    Article  MathSciNet  Google Scholar 

  29. Rehm, C. R., Temple, M. A., Raines, R. A., & Mills, R. F. (2006). Entropy-based spectral processing on the ieee 802.11A OFDM waveform. In Military communications conference, 2006. MILCOM 2006. IEEE, (pp. 1–5).

  30. Chen, X., & Nagaraj, S. (2008). Entropy based spectrum sensing in cognitive radio. In Wireless telecommunications symposium, 2008. WTS 2008, (pp. 57–61).

  31. Gu, J., Liu, W. Jang, S. J., & Kim, J. M. (2010). Cross entropy based spectrum sensing. In Communication technology (ICCT), 2010 12th IEEE international conference on, (pp. 373–376).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Ma, J. & Faust, O. A Comparative Study of Different Entropies for Spectrum Sensing Techniques. Wireless Pers Commun 69, 1719–1733 (2013). https://doi.org/10.1007/s11277-012-0659-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0659-6

Keywords

Navigation