Skip to main content
Log in

Space–Time/Space–Frequency/Space–Time–Frequency Block Coded MIMO-OFDM System with Equalizers in Quasi Static Mobile Radio Channels Using Higher Tap Order

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In 4G broadband wireless communications, multiple transmit and receive antennas are used to form multiple input multiple output (MIMO) channels to increase the capacity (by a factor of the minimum number of transmit and receive antennas) and data rate. In this paper, the combination of MIMO technology and orthogonal frequency division multiplexing (OFDM) systems is analyzed for wideband transmission which mitigates the intersymbol interference and hence enhances system capacity. In MIMO-OFDM systems, the coding is done over space, time, and frequency domains to provide reliable and robust transmission in harsh wireless environment. Also, the performance of space time frequency (STF) coded MIMO-OFDM is analyzed with space time and space frequency coding as special cases. The maximum achievable diversity of STF coded MIMO-OFDM is analyzed and bit error rate performance improvement is verified by simulation results. Simulations are carried out in harsh wireless environment, whose effect is mitigated by using higher tap order channels. The complexity is resolved by employing sphere decoder at the receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murch R. D., Letaief K. B. (2002) Antenna systems for broadband wireless access. IEEE Communications Magazine 40: 76–83

    Article  Google Scholar 

  2. Tarokh V., Seshadri N., Calderbank A. R. (1998) Space–Time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory 44: 744–765

    Article  MathSciNet  MATH  Google Scholar 

  3. Alamouti S. M. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16: 1451–1458

    Article  Google Scholar 

  4. Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space–Time block codes from orthogonal designs. IEEE Transactions on Information Theory 45: 1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  5. Su W., Xia X. G. (2004) Signal constellations for quasi-orthogonal space–time block codes with full diversity. IEEE Transactions on Information Theory 50: 2331–2347

    Article  MathSciNet  Google Scholar 

  6. Su W., Xia X. G., Liu K. J. R. (2004) A systematic design of high-rate complex orthogonal space–time block codes. IEEE Communications Letters 8: 380–382

    Article  Google Scholar 

  7. Fellenberg C., Rohling H. (2009) Quadrature amplitude modulation for differential space–time block codes. Springer Wireless Personal Communications 50: 247–255

    Article  Google Scholar 

  8. Li Y., Stuber G. L. (2007) Orthogonal frequency division multiplexing for wireless communications. Springer, New York

    Google Scholar 

  9. Bolcskei H. (2006) MIMO-OFDM wireless systems: Basics, perspectives and challenges. IEEE Wireless Communications 13: 31–37

    Article  Google Scholar 

  10. Su W., Safar Z., Liu K. J. R. (2005) Full-rate full-diversity space–frequency codes with optimum coding advantage. IEEE Transactions on Information Theory 51: 229–249

    Article  MathSciNet  Google Scholar 

  11. Huttera A. A., Mekrazib S., Getuc B. N., Platbrooda F. (2005) Alamouti-based space–frequency coding for OFDM. Springer Wireless Personal Communications 35: 173–185

    Article  Google Scholar 

  12. Liu Z., Xin Y., Giannakis G. (2002) Space–time–frequency coded OFDM over frequency selective fading channels. IEEE Transactions on Signal Processing 50: 2465–2476

    Article  Google Scholar 

  13. Senthuran S., Anpalagan A., Das O., Khan S. (2011) On the performance of a constellation-rotated time-spreaded space–frequency coding scheme for 4 ×  1 MISO OFDM transceivers. Springer Wireless Personal Communications 60: 251–262

    Article  Google Scholar 

  14. Su W., Safar Z., Liu K. J. R. (2005) Towards maximum achievable diversity in space, time and frequency: Performance analysis and code design. IEEE Transactions on Wireless Communications 4: 1847–1857

    Article  Google Scholar 

  15. Gong Y., Letaief K. B. (2003) An efficient space–frequency coded OFDM system for broadband wireless communications. IEEE Transactions on Communications 51: 2019–2029

    Article  Google Scholar 

  16. Molisch F., Win M. Z., Winters H. J. (2002) Space–time–frequency (STF) coding for MIMO-OFDM systems. IEEE Communications Letters 6: 370–372

    Article  Google Scholar 

  17. Su W., Safar Z., Olfat M., Liu K. J. R. (2003) Obtaining full-diversity space–frequency codes from Space–Time codes via mapping. IEEE Transactions on Signal Processing 51: 2905–2916

    Article  MathSciNet  Google Scholar 

  18. Michailidis, E. T., & Kanatas, A. G. (2011). Statistical simulation modeling of 3-D HAP-MIMO channels. doi:10.1007/s11277-011-0314-7.

  19. Halunga S., Vizireanu D. N. (2010) Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Elsevier Digital Signal Processing 20: 166–178

    Article  Google Scholar 

  20. Halunga S., Vizireanu D. N., Fratu O. (2010) Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Elsevier Digital Signal Processing 20: 191–200

    Article  Google Scholar 

  21. Wei Z., Xia X. G., Letaief K. B. (2007) Space–time/frequency coding for MIMO-OFDM in next generation broadband wireless systems. IEEE Wireless Communications 14: 32–43

    Google Scholar 

  22. Zhang Y., Zhang C., Tu G. F. (2009) Block diagonal differential space–time–frequency codes for four transmit antennas. Springer Wireless Personal Communications 49: 517–531

    Article  Google Scholar 

  23. Fazel F., Jafarkhani H. (2008) Quasi-Orthogonal space–frequency and space–time–frequency block codes for MIMO-OFDM channels. IEEE Transactions on Wireless Communications 7: 184–192

    Article  Google Scholar 

  24. Jakes W. C. (1975) Microwave mobile communications. Wiley, New York

    Google Scholar 

  25. Wu, K. G., & Wu, J. A. (2011). Reduced-complexity decision-directed channel estimation in OFDM systems with transmit diversity. doi:10.1007/s11277-011-0445-x.

  26. Dokhanchi, S. H., & Falahati, A. (2011). Tracking performance of an adaptive MIMO-OFDM LS estimator via MSE criterion over a wireless time correlated fading channel. doi:10.1007/s11277-011-0466-5.

  27. Tian, J., Jiang, Y., & Hu, H. (2011). Cyclostationarity-based frequency synchronization for OFDM systems over doubly-selective fading channels. doi:10.1007/s11277-011-0352-1.

  28. Diggavi S. N., Al-Dhahir N., Stamolis A., Alderbank A. R. (2004) Great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE 92: 219–270

    Article  Google Scholar 

  29. Schniter P. (2004) Low-complexity equalization of OFDM in doubly selective channels. IEEE Transactions on Signal Processing 52: 1002–1011

    Article  MathSciNet  Google Scholar 

  30. Yoon C., Lee H., Kang J. (2010) Combined ML and DFE decoding for coded double STBC-OFDM system. IEEE Communications Letters 14: 1164–1166

    Article  Google Scholar 

  31. Kalbasi R., Falconer D. D., Banihashemi A. H., Dinis R. (2009) A comparison of frequency-domain block MIMO transmission systems. IEEE Transactions on Vehicular Technology 58: 165–175

    Article  Google Scholar 

  32. Chang T. H., Ma W. K., Chi C. Y. (2008) Maximum-likelihood detection of orthogonal Space–Time block coded OFDM in unknown block fading channels. IEEE Transactions on Signal Processing 56: 1637–1649

    Article  MathSciNet  Google Scholar 

  33. Rezk M., Friedlander B. (2011) On high performance MIMO communications with imperfect channel knowledge. IEEE Transactions on Wireless Communications 10: 602–613

    Article  Google Scholar 

  34. Viterbo E., Boutros J. (1999) A universal lattice code decoder for fading channel. IEEE Transactions on Information Theory 45: 1639–1642

    Article  MathSciNet  MATH  Google Scholar 

  35. Hajiani, P., & Shafiee, H. (2005). Low complexity sphere decoding for Space–Frequency-coded MIMO-OFDM systems. In Proceedings of the Second IFIP International Conference on Wireless and Optical Communications Networks (pp. 410–414).

  36. Zheng C., Chu X., McAllister J., Woods R. (2011) Real-valued fixed-complexity sphere decoder for high dimensional QAM-MIMO systems. IEEE Transactions on Signal Processing 59: 4493–4499

    Article  MathSciNet  Google Scholar 

  37. Stuber G. L. (2001) Principles of mobile communication. Kluwer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder S. Saini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, B., Saini, D.S. Space–Time/Space–Frequency/Space–Time–Frequency Block Coded MIMO-OFDM System with Equalizers in Quasi Static Mobile Radio Channels Using Higher Tap Order. Wireless Pers Commun 69, 1947–1968 (2013). https://doi.org/10.1007/s11277-012-0672-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0672-9

Keywords

Navigation