Abstract
This paper presents an exact closed-form expression for the symbol error rate of the square and rectangular quadrature amplitude modulation (QAM) constellations, under the assumption that the transmitted and/or received signals are corrupted by the phase noise fluctuation. Phase noise is one of the most important radio frequency (RF) imperfections which usually comes from the local oscillator (LO) at the transmitter and/or receiver. In this paper, the additive white Gaussian noise (AWGN) channel is assumed. Although AWGN is a simple channel, but our exact analysis of the symbol error rate in this paper can be led to the precise study of the real communication systems in the fading channel. Hence, an exact closed-form solution for the symbol error rate is derived here as a finite summation of the two-dimensional Q-function and verified by the simulation.
Similar content being viewed by others
References
Lee T. H., Hajimiri A. (2000) Oscillator phase noise: A tutorial. IEEE Journal of Solid-State Circuits 35(3): 326–336
Madani M. H., Abdipour A., Mohammadi A. (2011) Analytical performance evaluation of the OFDM systems in the presence of jointly fifth order nonlinearity and phase noise. Springer, Analog Integrated Circuits and Signal Process 66(1): 103–115
Hajimiri A., Limotyrakist S., Lee T. H. (1999) Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits 34(6): 790–804
Kouznetsov K. A., Meyer R. G. (2000) Phase noise in LC oscillators. IEEE Journal of Solid-State Circuits 35(8): 1244–1248
Yih C. H. (2011) BER analysis of OFDM systems impared by phase noise in frequency selective fading channels. Springer, Wireless Personal Communication 59(4): 667–687
Madani M. H., Abdipour A., Mohammadi A. (2010) Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications 4(10): 1226–1237
Liu G., Zhu W. (2007) Phase noise effects and mitigation in OFDM systems over Rayleigh fading channels. Springer, Wireless Personal Communication 41(2): 243–258
Tubbax J., Come B., Van Der Perre L., Donnay S., Engels M., De Man H., Moonen M. (2005) Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Transaction on Wirelss Communication 4(3): 872–877
Taparugssanagorn A., Ylitalo J. (2009) Characteristics of short-term phase noise of MIMO channel sounding and its effect capacity estimation. IEEE Transaction on Instrumentation Measurement 58(1): 196–201
Hohne T., Ranki V. (2010) Phase noise in beamforming. IEEE Transaction on Wireless Communication 9(12): 3682–3689
Bougeard S., Helard J. F., Siaud I. (2006) Performance optimization of high order QAM in presence of phase noise and AWGN: Application to a decision directed frequency synchronization system. Springer, Wireless Personal Communication 37(1-2): 123–138
Georgiadis A. (2004) Gain, phase imbalance and phase noise effects on error vector magnitude. IEEE Transaction on Vehicular Technology 53(2): 443–449
Chen Z. Q., Dai F. F. (2010) Effects of LO phase and amplitude imbalances and phase noise on M-QAM transceiver performance. IEEE Transaction on Industrial Electronics 57(5): 1505–1517
Razavi B. (1998) RF microelectronics. Prentice Hall, Englewood Cliffs
Mohammadi, A., Shayegh, F., Abdipour, A. & Mirzavand, R. (2007). Direct conversion EHM transceivers design for millimeter-wave wireless applications. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–9.
Proakis J. G. (2000) Digital communications. McGraw-Hill, New York
Papoulis A., Pillai U. (2001) Probability, random variables and stochastic processes. McGraw-Hil, New York
Craig, J. W. (1991). A new, simple and exact result for calculating the proba-bility of error for two-dimensional signal constellations. In: Proceedings of IEEE MILCOM (Vol. 2, pp. 571–575). McLean, VA, Nov. 1991.
Beaulieu N. C. (2006) A Useful integral for wireless communication theory and its application to rectangular signaling constellation error rates. IEEE Transaction on Communication 54(5): 802–805
Simon M. K. (2002) A simpler form of the Craig representation for the two-dimensional joint Gaussian Q-function. IEEE Communication Letters 6(2): 49–51
Sadiku M. O. (2000) Numerical techniques in electromagnetics. CRC Press, Boca Raton
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lari, M., Mohammadi, A., Abdipour, A. et al. SER Computation in M-QAM Systems with Phase Noise. Wireless Pers Commun 70, 1575–1587 (2013). https://doi.org/10.1007/s11277-012-0766-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-012-0766-4