Skip to main content
Log in

Opportunistic Selection for Decode-and-Forward Cooperative Networks with Secure Probabilistic Constraints

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work presents theoretical analysis on security performance for relay selections based on either statistical or instantaneous channel state information (CSI) of the eavesdropper (CSI-E) channels in a decode-and-forward relaying network. By considering security constraints, we have derived exact expressions for the average secrecy rate and the secrecy outage probability. Moreover, analytical expressions of the false secrecy probability are derived for the suboptimal relay selection based on statistical CSI-E, which are used as the constrained functions of new selection metrics. Furthermore, our work achieves a better tradeoff between the outage probability and the false secrecy probability. The accuracy of our performance analysis is verified by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyner A. D. (1975) The wire-tap channel. Bell System Technical Journal 54: 1355–1367

    MathSciNet  MATH  Google Scholar 

  2. Leung-Yan-Cheong S. K., Hellman M. E. (1978) The Gaussian wire-tap channel. IEEE Transactions on Information Theory 24: 451–456

    Article  MathSciNet  MATH  Google Scholar 

  3. Csiszár I., Körner J. (1978) Broadcast channels with confidential messages. IEEE Transactions on Information Theory 24: 339–348

    Article  MATH  Google Scholar 

  4. Bloch M., Barros J., Rodrigues M. R. D., McLaughlin S. W. (2008) Wireless information-theoretic security. IEEE Transactions on Information Theory 54: 2515–2534

    Article  MathSciNet  Google Scholar 

  5. Gopala P. K., Lai L., Gamal H. E. (2008) On the secrecy capacity of fading channels. IEEE Transactions on Information Theory 54: 4687–4698

    Article  MATH  Google Scholar 

  6. Goel S., Negi R. (2008) Guaranteeing secrecy using artificial noise. IEEE Transactions on Wireless Communications 7: 2180–2189

    Article  Google Scholar 

  7. Khisti A., Wornell G. W. (2010) Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Transactions on Information Theory 56: 3088–3104

    Article  MathSciNet  Google Scholar 

  8. Zhou X., McKay M. R. (2010) Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology 59: 3831–3842

    Article  Google Scholar 

  9. He F., Man H., Wang W. (2011) Maximal ratio diversity combining enhanced security. IEEE Communications Letters 15: 509–511

    Article  Google Scholar 

  10. Sun, X., Wang, J., Xu, W., & Zhao, C. (2012). Performance of secure communications over correlated fading channels. IEEE Signal Signal Processing Letters (to appear).

  11. Pabst R., Walke B. H., Schultz D. C. et al (2004) Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine 42: 80–89

    Article  Google Scholar 

  12. Xu W., Dong X., Lu W. (2011) Joint precoding optimization for multiuser multiantenna relaying downlinks using quadratic programming. IEEE Transactions on Communications 59: 1228–1235

    Article  Google Scholar 

  13. Xu W., Dong X., Lu W. (2010) MIMO relaying broadcast channels with linear precoding and quantized channel state information feedback. IEEE Transactions on Signal Processing 58: 5233–5245

    Article  MathSciNet  Google Scholar 

  14. Xu, W., Dong, X., & Lu, W. (2010). Joint optimization for source and relay precoding under MIMO downlink channels. In Proceedings of IEEE ICC (pp. 1–5).

  15. Oohama, Y. (2007). Capacity theorems for relay channels with confidential messages. In Proceedings of IEEE ISIT (pp. 926–930), Sept 2007.

  16. Lai L., Gamal H. E. (2008) The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory 54: 4005–4019

    Article  Google Scholar 

  17. He, X., & Yener, A. (2009). Two-hop secure communication using an untrusted relay. EURASIP Journal on Wireless Communications and Networks.

  18. Krikidis I., Thompson J. S., McLaughlin S. (2009) Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications 8: 5003–5011

    Article  Google Scholar 

  19. Krikidis I. (2010) Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications 4: 1787–1791

    Article  Google Scholar 

  20. Dong L., Han Z., Petropulu A., Poor H. V. (2010) Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing 58: 1875–1888

    Article  MathSciNet  Google Scholar 

  21. Proakis J. G. (1995) Digital communications. McGraw-Hill, New York

    Google Scholar 

  22. Gradshteyn I. S., Ryzhik I. M. (2004) Table of integrals, series, and products (6th ed.). Elsevier, Singapore

    Google Scholar 

  23. Chau Y. A., Huang K. Y. (2008) Channel statistics and performance of cooperative selection diversity with dual-hop amplify-and-forward relay over rayleigh fading channels. IEEE Transactions on Wireless Communications 7: 1779–1785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Xu, W., Jiang, M. et al. Opportunistic Selection for Decode-and-Forward Cooperative Networks with Secure Probabilistic Constraints. Wireless Pers Commun 70, 1633–1652 (2013). https://doi.org/10.1007/s11277-012-0771-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0771-7

Keywords

Navigation