Skip to main content
Log in

Range Estimation in a Time Varying Multipath Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, range estimation in a time varying multipath channel is investigated, on the basis of which a multicarrier (MC) signal is compared with its pseudo-random (PN) counterpart in terms of the Cramer-Rao lower bound (CRLB) and the maximum likelihood estimator (MLE). The CRLB for range estimation in a time varying multipath channel is derived for three cases: (1) known channel state information (CSI); (2) unknown CSI; and (3) a special case of unknown CSI where the channel is modeled via Doppler shift. Furthermore, the MLE is developed for range estimation for each one of the above three cases and is investigated for a multipath Doppler channel with respect to the separability of its multipath components. Besides, the condition for a multipath Doppler channel to be separable is explored for a PN signal as well as for a MC signal. Simulation results show that range estimation with a MC signal outperforms its PN counterpart in a time varying channel, similar as that in a time invariant channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rappaport T., Reed J., Woerner B. (1996) Position location using wireless communications on highways of the further. IEEE Communications Magazine 34(10): 33–41

    Article  Google Scholar 

  2. Qi Y., Kobayashi H., Suda H. (2006) Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications 5(3): 672–681

    Article  Google Scholar 

  3. Shin D., Sung T. K. (2002) Comparisons of error characteristics between TOA and TDOA positioning. IEEE Transactions on Aerospace and Electronic Systems 38(1): 307–311

    Article  Google Scholar 

  4. Krishnakumar A. S., Krishnan P. (2005) On the accuracy of signal strength-based estimation techniques. IEEE INFOCOM 1: 642–650

    Google Scholar 

  5. Chen Y., Kobayashi H. (2002) Signal strength based indoor geolocation. IEEE ICC 1: 436–439

    Google Scholar 

  6. Misra P. (2006) Global positioning system: Signals, measurements, and performance. Ganga-Jamuna Press, Lincoln, Mass

    Google Scholar 

  7. Yu K., Sharp I., Guo Y. (2009) Ground-based wireless positioning. Wiley-IEEE press, New York

    Book  Google Scholar 

  8. Chen J., Hudson R. E., Yao K. (2002) Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Transactions on Signal Processing 50(8): 1843–1854

    Article  Google Scholar 

  9. Urruela A., Sala J., Riba J. (2006) Average performance analysis of circular and hyperbolic geolocation. IEEE Transactions on Vehicular Technology 55(1): 52–66

    Article  Google Scholar 

  10. Kay, S. M. (1993-1998). Fundamentals of statistical signal processing: Estimation theory. Prentice-Hall PTR, Upper Saddle River, NJ.

  11. Wang, Y., Leus, G., & Veen, A. J. (Apr. 2009). Cramer-Rao bound for range estimation. InProceedings of IEEE ICASSP, pp. 3301–3304.

  12. Dardari, D., Karisan, Y., Gezici, S., D’Amico, A. A., & Mengali, U. (Jun. 2009). Performance limits on ranging with cognitive radio. In Proceedings of IEEE ICC workshops, pp. 1–5.

  13. Gezici S., Sahinoglu Z. (2008) Ranging in a single-input multiple-output (SIMO) system. IEEE Communications Letters 12(3): 197–199

    Article  Google Scholar 

  14. Girod L., Estrin D. (2001) Robust range estimation using acoustic and multimodal sensing. IEEE/RSJ International Conference on Intelligent Robots and Systems 3: 1312–1320

    Google Scholar 

  15. Venkatraman S., Caffery J., You H.-R. (2002) Location using LOS range estimation in NLOS environments. IEEE VTC Spring 2002(2): 856–860

    Google Scholar 

  16. Venkatraman S., Caffery J., You H.-R. (2004) A novel ToA location algorithm using LoS range estimation for NLoS environments. IEEE Transactions on Vehicular Technology 53(5): 1515–1524

    Article  Google Scholar 

  17. Wang D., Fattouche M. (2010) OFDM transmission for time-based range estimation. IEEE Signal Processing Letters 17(6): 571–574

    Article  Google Scholar 

  18. Dardari D., Chia-Chin C., Win M. Z. (2008) Threshold-based time-of-arrival estimators in UWB dense multipath channels. IEEE Transactions on Communications 56(8): 1366–1378

    Article  Google Scholar 

  19. Dardari D., Conti A., Ferner U., Giorgetti A., Win M. Z. (2009) Ranging with ultrawide bandwidth signals in multipath environments. Proceedings of IEEE 97(2): 404–426

    Article  Google Scholar 

  20. Gezici S., Tian Z., Giannakis G. B., Kobayashi H., Molisch A. F., Poor H. V., Sahinoglu Z. (2005) Localization via ultra-wideband radios. IEEE Signal Processing Magazine 22(4): 70–84

    Article  Google Scholar 

  21. Falsi, C., Dardari, D., Mucchi, L., & Win, M. Z. (Jun. 2006). Range estimation in UWB realistic environments. In Proceedings of IEEE ICC, pp. 5692–5697.

  22. Guenach M., Moeneclaey M. (2006) Joint decision-directed feedback multiuser channel gain and delay estimation for DS-CDMA uplink. IEEE Transactions on Signal Processing 54(1): 1–12

    Article  Google Scholar 

  23. Athley F. (2005) Threshold region performance of maximum likelihood direction of arrival estimators. IEEE Transactions on Signal Processing 53(4): 1359–1373

    Article  MathSciNet  Google Scholar 

  24. Van Trees H. L. (2001) Detection, estimation, and modulation theory: Part III: Radar-Sonar processing and Gaussian signals in noise. Wiley-Interscience, New York

    Book  Google Scholar 

  25. Gezici S., Celebi H., Poor H. V., Arslan H. (2009) Fundamental limits on time delay estimation in dispersed spectrum cognitive radio systems. IEEE Transactions on Wireless Communications 8(1): 78–83

    Article  Google Scholar 

  26. Friedlander B. (1984) On the Cramer-Rao bound for time delay and Doppler estimation. IEEE Transactions on Information Theory 30(3): 575–580

    Article  MATH  Google Scholar 

  27. Doisy Y., Deruaz L., Beerens S., Been R. (2000) Target Doppler estimation using wideband frequency modulated signals. IEEE Transactions on Signal Processing 48(5): 1213–1224

    Article  Google Scholar 

  28. Hershey J. E., Saulnier G. J. (1997) Wideband signal Doppler and epoch estimation. Electronics Letters 33(9): 756–757

    Article  Google Scholar 

  29. Ho K. C., Chan Y. T. (1998) Optimum discrete wavelet scaling and its application to delay and Doppler estimation. IEEE Transactions on Signal Processing 46(9): 2285–2290

    Article  MathSciNet  Google Scholar 

  30. Duan J., He Z., Qin L. (2008) A new approach for simultaneous range measurement and Doppler estimation. IEEE Geoscince and Remote Sensing Letters 5(3): 492–496

    Article  Google Scholar 

  31. Huang Z., Zhou Y., Jiang W. (2008) TDOA and Doppler estimation for cyclostationary sgnals based on multi-cycle frequencies. IEEE Transactions on Aerospace and Electronic Systems 44(4): 1251–1264

    Article  MathSciNet  Google Scholar 

  32. Iltis R. A., Fuxjaeger A. W. (1991) A digital DS spread-spectrum receiver with joint channel and Doppler shift estimation. IEEE Transactions on Communications 39(8): 1255–1267

    Article  Google Scholar 

  33. Hahm M. D., Mitrovski Z. I., Titlebaum E. L. (1997) Deconvolution in the presence of Doppler with application to specular multipath parameter estimation. IEEE Transactions on Signal Processing 45(9): 2203–2219

    Article  Google Scholar 

  34. Nissila M., Pasupathy S. (2006) Joint estimation of carrier frequency offset and statistical parameters of the multipath fading channel. IEEE Transactions on Communications 54(6): 1038–1048

    Article  Google Scholar 

  35. Mason S., Berger C., Zhou S., Willett P. (2008) Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE Journal on Selected Areas in Communications 26(9): 1638–1649

    Article  Google Scholar 

  36. Hung N. L., Tho L. N., Chi C. K. (2009) RLS-based joint estimation and tracking of channel response, sampling, and carrier frequency offsets for OFDM. IEEE Transactions on Broadcasting 55(1): 84–94

    Article  Google Scholar 

  37. Manandhar, D., Suh, Y., & Shibasaki, R. (Jul. 2004). GPS signal acquisition and tracking—an approach towards development of software-based GPS receiver. Technical Report of IEICE, ITS2004-16.

  38. Win M. Z., Scholtz R. A. (2002) Characterization of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view. IEEE Journal on Selected Areas in Communications 20(9): 1613–1627

    Article  Google Scholar 

  39. Shen, Y., & Win, M. Z. (Mar. 2007). Fundamental limits of wideband localization accuracy via Fisher information. In Proceedings of IEEE WCNC, pp. 3046–3051.

  40. Shen, Y., & Win, M. Z. (Mar. 2007). Fundamental limits of wideband cooperative localization accuracy via Fisher information. In Proceedings of IEEE WCNC, pp. 3046–3051.

  41. Shen, Y., & Win, M. Z. (May 2008). Effect of path-overlap on localization accuracy in dense multipath environments. In Proceedings of IEEE ICC, pp. 4197–4202.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Fattouche, M. Range Estimation in a Time Varying Multipath Channel. Wireless Pers Commun 71, 887–908 (2013). https://doi.org/10.1007/s11277-012-0850-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0850-9

Keywords

Navigation