Skip to main content
Log in

Double MOS Loaded Circular Microstrip Antenna with Airgap for Mobile Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel model of a wide frequency range double MOS loaded circular microstrip patch antenna with airgap between ground plane and substrate is proposed. In this structure two metal oxide semiconductor (MOS) devices are loaded on the patch to enhance the operating frequency range of antenna. To investigate the antenna, different parameters such as resonance frequency, input impedance, frequency agility, VSWR, radiation pattern etc. are calculated and simulated. The resonant frequency of proposed 10 mm radius patch is upward shifted from 5.2 to 6.8 GHz using 1 mm airgap and by loading MOS, antenna can be tuned down to 1.27 GHz operating frequency, which leads to compactness and tunability of antenna. Proposed antenna can be tuned between 1.27 and 6.8 GHz frequency of operation which makes the antenna highly suitable for wide frequency range of mobile communication. The proposed double MOS loaded antenna possessed 82.94 % frequency agility. The antenna is worth for GPS, WLAN, UMTS, and WiMAX operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaya A., Yuksel E. Y. (2007) Investigation of a compensated rectangular microstrip antenna with negative capacitor and negative inductor for bandwidth enhancement. IEEE Trans on Antennas and Propagation 55: 1275–1282

    Article  Google Scholar 

  2. Chakravorty, T., & De, A. (2003). A novel method of extending tunability of circular patch using two shorting pins. IEEE Antennas and Propagation Society International Symposium, 2, 736–739.

    Google Scholar 

  3. Kanaujia B. K., Singh A. K., Vishvakarma B. R. (2008) Frequency agile annular ring microstrip antenna loaded with MOS capacitor. Journal of Electromagnetic wave and Application 22: 1361–1370

    Article  Google Scholar 

  4. Gautam A. K., Vishvakarma B. R. (2006) Frequency agile microstrip antenna symmetrically loaded with tunnel diodes. Microwave and Optical Technology Letters 48(9): 1807–1810

    Article  Google Scholar 

  5. Guha D., Siddiqui J. Y. (2003) Resonant frequency of circular microstrip antenna covered with dielectric superstrate. IEEE Trans on Antennas and Propagation 51: 1649–1652

    Article  Google Scholar 

  6. Chen H. T., Chen H. D., Cheng Y. T. (1997) Full wave analysis of the anular ring loaded spherical circular microstrip antenna. IEEE Trans on Antennas and Propagation 45: 1581–1583

    Article  Google Scholar 

  7. Gautam A. K., Vishvakarma B. R. (2007) Analysis of varactor loaded active microstrip antenna. Microwave and Optical Technology Letters 49: 416–421

    Article  Google Scholar 

  8. Gupta V., Sinha S., Koul S. K., Bhat B. (2003) Wideband dielectric resonator loaded suspended microstrip patch antenna. Microwave and optical technology letters 37: 300–302

    Article  Google Scholar 

  9. Kanaujia B. K., Vishvakarma B. R. (2004) Analysis of gunn integrated annular ring microstrip antenna. IEEE Transaction on Antenna and Propagation 52: 88–97

    Article  Google Scholar 

  10. Pandey, G. P., Kanaujia, B. K., Gautam, A. K., & Gupta, S. K. (2012). Ultra—Wideband l-strip proximity coupled slot loaded circular microstrip antenna for modern communication systems. Wireless Personal Communications. Springer (Under Press).

  11. Lee K. F., Ho K. Y., Dahele J. S. (1984) Circular disk microstrip antenna with an airgap. IEEE Trans Antenna Propagation 32: 880–884

    Article  Google Scholar 

  12. Guha D. (2001) Resonant frequency of circular microstrip antennas with and without air gaps. IEEE Transaction on Antenna and Propagation 49: 55–59

    Article  Google Scholar 

  13. Sharma S. K., Vishvakarma B. R. (1999) MOS capacitor loaded frequency agile microstrip antenna. International Journal of Electronics 86: 979–990

    Article  Google Scholar 

  14. Bahl I. J., Bhartia P. (1980) Microstrip antennas. Artech House, Dedham, MA

    Google Scholar 

  15. Abboud F., Damiano J. P., Papiernik A. (1990) A new model for calculating the input impedance of coax-fed circular microstrip antennas with and without air gaps. IEEE Transaction on Antenna and Propagation 38: 1882–1885

    Article  Google Scholar 

  16. Pandey, G. P., Kanaujia, B. K., & Gupta, S. K. (2009). Double MOS loaded circular microstrip antenna for frequency agile. In IEEE applied electromagnetic conference Kolkata. 978-1-4244-4819-7/09.

  17. Garg R., Bhartia P., Bahl I., Ittipiboon A. (2001) Microstrip antenna design hand book. Artech House, Boston

    Google Scholar 

  18. Zeland Software Co. (2009). IE3D v14.0, California.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.K., Kanaujia, B.K. & Pandey, G.P. Double MOS Loaded Circular Microstrip Antenna with Airgap for Mobile Communication. Wireless Pers Commun 71, 987–1002 (2013). https://doi.org/10.1007/s11277-012-0856-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0856-3

Keywords

Navigation