Skip to main content
Log in

Vertical Handover Necessity Estimation Based on a New Dwell Time Prediction Model for Minimizing Unnecessary Handovers to a WLAN Cell

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, we devise a vertical handover necessity estimation (HNE) method to minimize unnecessary handovers for a mobile node (MN) entering a WLAN cell. The method relies on a new model for prediction of dwell time and computation of certain threshold values. By comparing the predicted dwell time with those thresholds, a MN is able to make decision whether it should perform handover to a WLAN cell, while keeping the probability of handover failure and probability of unnecessary handover within bounds. Simulation results obtained from Monte-Carlo experiments prove validity of the proposed model. We also compare this model with existing models for minimizing unnecessary handovers. We further enhance the analytical model by incorporating the throughput gain in HNE and show that this can further optimize handover decision in heterogenous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mrquez-Barja J., Calafate T., Juan-Carlos Can C., Pietro M. (2011) An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications 34(8): 985–997

    Article  Google Scholar 

  2. Pesola J., Pnkuen S., Markopoulos A. (2004) Location-aided handover in heterogeneous wireless networks. Wireless Personal Communications 30(2): 195–205

    Article  Google Scholar 

  3. Melia, T., de la Oliva, A., Soto, I., Bernardos, C. J., & Vidal, A. (2006). WLC34-2: Analysis of the effect of mobile terminal speed on WLAN/3G vertical handovers. In IEEE global telecommunications conference 2006. GLOBECOM 27 (Vol. 1, pp. 1–6).

  4. Hongyang, B., Chen He, H., & Lingge, J. (2003). Performance analysis of vertical handover in a UMTS-WLAN integrated network. In 14th IEEE Proceedings on personal, indoor and mobile radio communications (PIMRC) (Vol. 1, pp. 187–191), September 2003.

  5. Yan X., Ahmet Y. S., Narayanan S. (2010) A survey of vertical handover decision algorithms in fourth Generation heterogeneous wireless networks. Computer Networks 54(11): 1848–1863

    Article  MATH  Google Scholar 

  6. Yoo S.-J., Cypher D., Golmie N. (2010) Timely effective handover mechanism in heterogeneous wireless networks. Wireless Personal Communications 52(3): 449–475

    Article  Google Scholar 

  7. Kim, W.-I., Lee, B.-J., Song, J.-S., Shin, Y.-S., Kim, Y.-J. (2007). Ping-Pong avoidance algorithm for vertical handover in wireless overlay networks. In 66th IEEE vehicular technology conference, fall VTC-2007 (pp. 1509–1512), October 2007.

  8. Kato T., Takechi R., Ono H. (2001) A study on mobile IPv6 based mobility management architecture. FUJITSU Science Technology 37: 65–71

    Google Scholar 

  9. Kato, T., Takechi, R., & Ono, H. (2005). Survey and classification of transport layer mobility management schemes. In IEEE 16th international symposium on personal, indoor and mobile radio communications, 2005. PIMRC 2005 (Vol. 4, pp. 2109–2115), September 2005.

  10. Hasswa A., Nasser N., Hassanein H. (2007) A seamless context-aware architecture for fourth generation wireless networks. Wireless Personal Communications 43(3): 1035–1049

    Article  Google Scholar 

  11. Yan X., Mani N., Sekercioglu Y. A. (2008) A traveling distance prediction based method to minimize unnecessary handovers from cellular networks to WLANs. IEEE Communications Letters 12(1): 14–16

    Article  Google Scholar 

  12. Hussain, R., Malik, S. A., Abrar, S., Riaz, R. A., & Khan, S. A. (2012) Minimizing unnecessary handovers in a heterogeneous network environment. Przeglad Elektrotechniczny (Electrical Review), 88(9b), 314–318 June 2012.

    Google Scholar 

  13. Rappaport T. S. (2002) Wireless communications principles and practices. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  14. Varade, S. W., & Kulat, K. D. (2009). Robust algorithms for DOA estimation and adaptive beamforming for smart antenna application. In Conference of emerging trends in engineering and technology (ICETET) (pp. 1195–1200) December 2009.

  15. Mohanty S. (2005) VEPSD: A novel velocity estimation algorithm for next-generation wireless systems. IEEE Transactions on Wireless Communications 4(6): 2655–2660. doi:10.1109/TWC.2005.858300

    Article  MathSciNet  Google Scholar 

  16. El Malki, K. (2007). Low-latency Handoffs in mobile IPv4. IETF Request for Comments 4881, June 2007.

  17. Oliva D. L., Banchs A., Soto I., Melia T., Vidal A. (2008) An overview of IEEE 802.21: media-independent handover services. IEEE Wireless Communications 15(4): 96–103

    Article  Google Scholar 

  18. Wang W., Liu X., Vicente J., Mohapatra P. (2011) Integration gain of heterogeneous WiFi/WiMAX networks. IEEE Transactions on Mobile Computing 10(8): 1131–1143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riaz Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, R., Malik, S.A., Abrar, S. et al. Vertical Handover Necessity Estimation Based on a New Dwell Time Prediction Model for Minimizing Unnecessary Handovers to a WLAN Cell. Wireless Pers Commun 71, 1217–1230 (2013). https://doi.org/10.1007/s11277-012-0870-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0870-5

Keywords

Navigation