Skip to main content
Log in

Underwater Acoustic Multimedia Communication Based on MIMO–OFDM

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A transmission scheme is proposed based on multi-input multi-output orthogonal frequency-division multiplexing (OFDM) for underwater acoustic multimedia (UWAM) communication. The proposed scheme integrates direct mapping and space-time block code strategies, a power assignment mechanism, OFDM, adaptive modulation, and unequal error protection in a UWAM system. The proposed UWAM system employs high power, low speed modulation, with schemes providing significant error protection for transmission of sensor data messages requiring a stringent bit-error rate (BER). In contrast, low power, high speed modulation schemes with reduced error protection are provided for messages that can tolerate a high BER, such as image and audio signals. Simulation results show that the proposed scheme not only fulfils the quality of services requirements of a UWAM system, but also maximizes transmission bit rates or minimizes transmission power requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MIMO:

Multi-input multi-output

OFDM:

Orthogonal frequency division multiplexing

UWAM:

Underwater acoustic multimedia

DM:

Direct mapping

STBC:

Space-time block code

BER:

Bit-error rate

QoS:

Quality of services

UWA:

Underwater acoustic

CDMA:

Code division multiple access

AUV:

Autonomous underwater vehicle

OVSF:

Orthogonal variable spreading factor

SISO:

Signal input signal output

JPEG2000:

Joint photographic experts group 2000

UEP:

Unequal error protection

OCPN:

Object-composition petri-net

CSMA/CA:

Carrier sense multiple access collision avoidance

SNR:

Signal to noise ratio

BPSK:

Binary phase shift keying.

QPSK:

Quadrature phase shift keying

MSE:

Mean square error

PSNR:

Peak-to-noise ratio

SER:

Symbol error rate

P :

The number of users in the UWAM communication system

M :

The number of OFDM symbols in an OFDM transmission packet

N :

The number of sub-carriers in an OFDM symbol

S p,m,k,l :

The adaptive complex modulated symbol transmitted in the m-th OFDM symbol over the k-th sub-carrier by using l-th transmission antenna before the IFFT for the considered OFDM block in the p-th user

s p,m,k,l :

The transmitted signal after the IFFT

μ pl :

The transmission power weighting factor of the l-th of the p-th user

y p,m,k,z :

The received signal of the k-th subcarrier of the m-th OFDM symbol by using z-th received antenna for p-th user

h p,m,k,l,z :

The impulse response of the underwater channel of the k-th subcarrier of the m-th OFDM symbol by using l-th transmission antenna and z-th received antenna for the p-th user

e p,m,k,l,z :

The additive white Gaussian noise of the k-th subcarrier of the m-th OFDM symbol by using l-th transmission antenna and z-th received antenna the p-th user.

y p,m,k :

The received signal of the k-th sub-carrier of the m-th OFDM symbol for the p-th user

c p,q-1 :

The energy of q−1 window for the p-th user

c p,q :

The energy of q window for the p-th user

d p :

The decision parameter of the p-th user

R :

The sum of the signal energy for the p-th user in the two windows.

N :

The sum of the noise energy for the p-th user in the two windows.

Δ p,l :

The parameter of adjustment interval

μ a :

The power weighting factors of audio signal in the unequal power system

μ i :

The power weighting factors of mage signal μ d in the unequal power system

μ d :

The power weighting factors of data signal ain the unequal power system

\({\sigma _n^2}\) :

The variance of adaptive white Gaussian noise

γ a :

The transmission data rates of audio signal of the unequal power system

γ i ,:

The transmission data rates of image signal of the unequal power system

γ d :

The transmission data rates of data signal of the unequal power system

References

  1. Quazi A. H., William L. K. (1982) Underwater acoustic communications. IEEE Communications Magazine 20: 24–30

    Article  Google Scholar 

  2. Baggeroer A. B. (1984) Acoustic telemetry-an overview. IEEE Journal of Oceanic Engineering OE-9(4): 229–235

    Article  Google Scholar 

  3. Stojanovic M. (1996) Recent advances in high-speed underwater acoustic communications. IEEE Journal of Oceanic Engineering 21(2): 125–136

    Article  Google Scholar 

  4. Kilfoyle D. B., Baggeroer A. B. (2000) The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering 25(1): 4–27

    Article  Google Scholar 

  5. Sozer E. M., Stojanovic M., Proakis J. G. (2000) Underwater acoustic networks. IEEE Journal of Oceanic Engineering 25(1): 72–83

    Article  Google Scholar 

  6. Proakis J. G., Sozer E. M., Rice J. A., Stojanovic M. (2001) Shallow water acoustic networks. IEEE Communications Magazine 39: 114–119

    Article  Google Scholar 

  7. Cui J. H., Kong J., Gerla M., Zhou S. (2006) The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications. IEEE Network 20: 12–18

    Google Scholar 

  8. Stojanovic, M. (2008). Underwater acoustic communication: Design considerations on the physical layer. MTS/IEEE Ocean’08.

  9. Chitre, M., Shahabudeen, S., Freitag, L., & Stojanovic, M. (2008). Recent advances in underwater acoustic communications & networking. MTS/IEEE Ocean’08.

  10. Rutgers D. P., Akyildiz I. F. (2009) Overview of networking protocols for underwater wireless communications. IEEE Communications Magazine 47: 97–102

    Google Scholar 

  11. Singer A. C., Nelson J. K., Kozat S. S. (2009) Signal processing for underwater acoustic communications. IEEE Communications Magazine 47: 90–96

    Article  Google Scholar 

  12. Wang, Y., Tang, J., Pan, Y., & Li, H. (2010). Underwater communication goes cognitive. MTS/IEEE Ocean’08.

  13. Stojanovic M., Preisig J. (2009) Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine 47: 84–89

    Article  Google Scholar 

  14. Tsimenidis C. C., Hinton O. R., Adams A. E., Sharif B. S. (2001) Underwater acoustic receiver employing direct-sequence spread spectrum and spatial diversity combining for shallow-water multiaccess networking. IEEE Journal of Oceanic Engineering 26: 594–603

    Article  Google Scholar 

  15. Freitag L., Stojanovic M., Singh S., Johnson M. (2001) Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication. IEEE Journal of Oceanic Engineering 26: 586–593

    Article  Google Scholar 

  16. Konstantakos D. P., Tsimenidis C. C., Adamas A. E., Sharif B. S. (2005) Comparison of DS-CDMA and MC-CDMA techniques for dual-dispersive fading acoustic communication networks. IEEE Proceedings on Communications 152: 1031–1038

    Article  Google Scholar 

  17. Stojanovic M., Freitage L. (2006) Multichannel detection for wideband underwater acoustic CDMA communication. IEEE Journal of Oceanic Engineering 31: 685–695

    Article  Google Scholar 

  18. Calvo E., Stojanovic M. (2008) Efficient channel-estimation-based multiuser detection for underwater CDMA systems. IEEE Journal of Oceanic Engineering 33: 502–512

    Article  Google Scholar 

  19. Pompili D., Melodia T., Akyildiz I. F. (2009) A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications 8: 1899–1909

    Article  Google Scholar 

  20. Chenbing H., Huang J., Ding Z. (2009) A variable-rate spread-spectrum system for underwater acoustic communications. IEEE Journal of Oceanic Engineering 34: 624–633

    Article  Google Scholar 

  21. Kilfoyle D. B., Preisig J. C., Baggeroer A. B. (2005) Spatial modulation experiments in the underwater acoustic channel. IEEE Journal of Oceanic Engineering 30(2): 406–415

    Article  Google Scholar 

  22. Roy S., Duman T. M., McDonald V., Proakis J. G. (2007) High-rate communication for underwater acoustic channels using multiple transmitters and space-time coding: Receiver structures and experimental results. IEEE Journal of Oceanic Engineering 32(3): 663–688

    Article  Google Scholar 

  23. Ormondroyd, R. F. (2007). A robust underwater acoustic communication system using OFDM-MIMO. MTS/IEEE Ocean’07.

  24. Hwang, S. J., & Schniter, P. (2008). Efficient multicarrier communication for highly spread underwater acoustic channels. IEEE Journal on Selected Areas in Communications 1674–1683.

  25. Li B., Huang J., Zhou S., Ball K., Stojanovic M., Lee F., Willett P. (2009) MIMO-OFDM for high-rate underwater acoustic communications. IEEE Journal of Oceanic Engineering 34(4): 634–644

    Article  Google Scholar 

  26. Goalic, A., Labat, J., Trubuil, J., Saoudi, S., & Rioualen, D. (1994). Toward a digital acoustic underwater phone. MTS/IEEE Oceans’94.

  27. Hoag D.F., Ingle V.K., Gaudette R.J. (1997) Low-bit-rate coding of underwater video using wavelet-based compression algorithms. IEEE Journal of Oceanic Engineering 22: 393–400

    Article  Google Scholar 

  28. Eastwood, R. L., Freitag, L. E., & Catipovic, J. A. (1996). Compression techniques for improving underwater acoustic transmission of images and data. MTS/IEEE Oceans’96.

  29. Lin C. F., Chang K. T. (2008) A power assignment mechanism in Ka band OFDM-based multi-satellites mobile telemedicine. Journal of Medical and Biological Engineering 28(1): 17–22

    Google Scholar 

  30. Lin, C. F., Hung, S. I., Chiang, & I. H. 802.11n WLAN transmission scheme for wireless telemedicine applications. Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine (online first).

  31. Lin C. F., Chang W. T., Lee H. W., Hung S. I. (2006) Downlink power control in multi-code CDMA mobile medicine system. Medical & Biological Engineering & Computing 44: 437–444

    Article  Google Scholar 

  32. Lin C. F. (2012) Mobile telemedicine: A survey study. Journal of Medical Systems 36: 511–520

    Article  Google Scholar 

  33. Lin, C. F., Chang, S. H., Chen, J. Y., & Yan J. T. (2008). A power assignment mechanism for underwater wireless multimedia. MTS/IEEE Ocean’08.

  34. Lin F. C., Chen Y. J., Yu J. Y., Yan T. J., Chang H. S. (2010). (pp. 413–418).

  35. Lin, C. F., Shi, Z. X., & Chang, S. H. (2009). A power assignment mechanism for OFDM-based underwater acoustic communication system. In Proceedings of IEEE the 11th international conference on advanced communication technique, pp. 1545–1548.

  36. Lin C. F., Shih C. H., Chen C. P., Leu S. W., Wu J. K., Tseng C. H., Hung H. S., Lu F. S., Parinov I. A., Chang S. H. (2009) An OFDM-based transmission scheme for underwater acoustic multimedia. WSEAS Transactions on Communications 8(3): 343–352

    Google Scholar 

  37. Lin, C. F., Lee, C. C., Lai, S. H., Chang, S. H., Tseng, C. H., Wu, T. D., et al. (2010). Direct mapping OFDM-based transmission scheme for underwater acoustic multimedia. IEEE ISPA’10.

  38. Tao, J., Zheng, Y. R., Xiao, C., Yang, T. C., & Yang, W. B. (2008). Time-domain receiver design for MIMO underwater acoustic communications. MTS/IEEE Ocean’08.

  39. Woo M., Prabhu N., Ghafoor A. (1995) Dynamic resource allocation for multimedia services in mobile communication environments. IEEE Journal on Selected Areas in Communications 13(5): 913–922

    Article  Google Scholar 

  40. Terry, J. & Heiskala, J. (2002). OFDM wireless LANs: A theoretical and practical guide (pp. 51–53). Indianapolis, IN: Sams Publishing.

  41. Technical specification group radio access network—Multiplexing and channel coding (FDD), 3rd Generation Partnership Project (3GPP), Release 7 (2007), pp. 25–212.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CF., Chang, SH., Lee, CC. et al. Underwater Acoustic Multimedia Communication Based on MIMO–OFDM. Wireless Pers Commun 71, 1231–1245 (2013). https://doi.org/10.1007/s11277-012-0871-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0871-4

Keywords

Navigation