Skip to main content
Log in

BER Performance of Walsh–Hadamard Like Kronecker Product Codes in a DS-CDMA and Cognitive Underlay System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Walsh–Hadamard transform, a discrete unitary transform is widely used in many applications such as signature codes in the current wireless standards IS-95 CDMA, WCDMA, CDMA2000 and image transform applications. It is simple to implement this transform since they can be generated by a single Kronecker product recursion formula. In this paper, a new set of binary code families similar to Walsh codes are obtained based on the concept of code concatenation and permutation. It is shown that these codes can be generated by reconfiguring the Walsh–Hadamard code generator. Hence it can be utilized in reconfigurable radios such as underlay cognitive radio (UCR). Theoretical results showing the BER performance due to MAI between primary users and secondary users in an UCR is also obtained. Simulation results showing the BER performance of these codes in a direct sequence spread spectrum system and UCR system with quadrature multiplexing operating in the individual decoding mode under AWGN plus flat fading Rayleigh channel conditions is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devroye, N., Vu, M., & Tarokh, V. (2008). Cognitive radio networks. IEEE Signal Processing Magazine, 12–23.

  2. Budiarjo, I., Nikokar, H., & Ligthart, L. P. (2008). Cognitive radio modulation techniques. IEEE Signal Processing Magazine, 24–34.

  3. Yi, N., Ma, Y. & Tafazolli, R. (2010). Underlay cognitive radio with full or partial channel quality information. International Journal of Navigation and Observation. Article ID 105723. doi:10.1155/2010/105723.

  4. Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Cognitive MIMO radio. IEEE Signal Processing Magazine, 46–59.

  5. Yue, G. (2008). Antijamming coding techniques. IEEE Signal Processing Magazine, 35–45.

  6. Proakis, J. G. Digital communications (4th ed.). New York: McGraw-Hill International.

  7. Pursley M. B. (1977) Performance evaluation for phase-coded spread-spectrum multiple-access communication-part I: System analysis. IEEE Transactions on Communications COM-25(8): 795–799

    Article  MathSciNet  Google Scholar 

  8. Pursley M. B., Sarwate D. V. (1977) Performance evaluation for phase-coded spread-spectrum multiple-access communication-part II: Code sequence analysis. IEEE Transactions on Communications COM-25(8): 800–803

    Article  Google Scholar 

  9. Chen, H.-H. The next generation CDMA technologies. London: Wiley.

  10. Akansu A. N., Poluri R. (2007) Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications. IEEE Transactions on Signal Processing 55(7): 3800–3806

    Article  MathSciNet  Google Scholar 

  11. Moon, T. K., & Stirling, W. C. Mathematical methods and algorithms for signal processing. Upper Saddle River: Pearson Education.

  12. Moon, T. K., & Stirling, W. C. Error correcting codes: Mathematical methods and algorithms. London: Wiley

  13. Elsner, J. P., Rykaczewski, P., Korner, C., & Jondral, F. K. (2007). Orthogonal complex Hadamard spreading codes for I/Q imbalance mitigation in MC-CDMA systems. VTC, 2661–2665.

  14. Seberry, J., Wysocki, B. J., & Wysocki, T. A. (2003). Williamson–Hadamard spreading sequences for DS-CDMA applications. Wireless Communications and Mobile Computing, 597–607.

  15. Suchitra, G., & Valarmathi, M. L. (2011). BER performance of modified Walsh Hadamard Codes in a DS-CDMA and cognitive underlay system. European Journal of Scientific Research, 563–578.

  16. Parker, M. G., Paterson, K. G., & Tellambura, C. (2004). Golay complementary sequences.

  17. Alaus, L., Palicot, J., Roland, C., Louet, Y., & Noguet, D. (2011). Promising technique of parameterization for reconfigurable radio, the common operators technique: Fundamentals and examples. Journal of Signal Processing System.

  18. Shi, Q., Guan, Y. L., & Law, C. L. (2007). Channel-matched spreading codes for the downlink of MC-CDMA. In ICC 2007 proceedings.

  19. Haykins S. (1998) Digital communications. Wiley, London

    Google Scholar 

  20. Oppermann I., Vucetic B. S. (1997) Complex spreading sequences with a wide range of correlation properties. IEEE Transactions on Communications 45(3): 365–375

    Article  Google Scholar 

  21. Jalil, A. M., Meghdadi, V., & Cances, J.-P. (2009). A new criterion for determining the efficiency of CDMA codes. In 17th European signal processing conference (EUSIPCO) (pp. 1632–1635).

  22. Zhao, Y., Seberry, J., Wysocki, B. J., & Wysocki, T. A. (2006). Complex orthogonal spreading sequences using mutually orthogonal complementary sets. Microwaves, Radar and Wireless Communications, 622–625.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suchitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchitra, G., Valarmathi, M.L. BER Performance of Walsh–Hadamard Like Kronecker Product Codes in a DS-CDMA and Cognitive Underlay System. Wireless Pers Commun 71, 2023–2043 (2013). https://doi.org/10.1007/s11277-012-0921-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0921-y

Keywords

Navigation