Skip to main content
Log in

Design of Low PAPR Fundamental Modulation Waveform for Transform Domain Communication System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To utilize white space spectrum in radio environment, transform domain communication system (TDCS) has been proposed to realize an overlay cognitive radio communication system by using spectrum bin nulling and frequency domain spreading. Being similar to OFDM systems, TDCSs still suffer from the problem of high peak to average power ratio (PAPR) in present of high power amplifier. In this paper, a distortionless PAPR reduction method is proposed for TDCS, namely clipping and phase replacement (CPR). Following this method, the clipping noise-dirty phase vector is replaced by an appropriate replacement, which is selected from the identical phase mapping space to avoid systematic performance degradation. Owing to the high computational complexity from exhaust search, an efficient implementation of CPR method is proposed through the iterative PAPR reduction and phase replacement. Moreover, some considerations for practical applications, such as imperfect spectrum sensing and the number of phase taps, are considered. Analytic and simulation results demonstrate that the distortionless CPR PAPR reduction method is a preferable candidate for TDCSs in both the single-user and multi-user scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communication. IEEE Journal on Selected Areas in Communications 23(2): 201–220

    Article  Google Scholar 

  2. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, Royal Institute of Technology.

  3. Budiarjo I., Nikookar H., Ligthart L.P. (2008) Cognitive radio modulation techniques. IEEE Signal Processing Magazine 25(6): 24–34

    Article  Google Scholar 

  4. Andren, C. F., Lucas, L. V., & Schachte, J. A. (1991). Low probability of intercept communication system. U.S. Patent 5029184.

  5. Dillard G. M., Reuter M., Zeidler J., Zeidler B. (2003) Cyclic code shift keying: A low probability of intercept communication technique. IEEE Transactions on Aerospace and Electronic Systems 39(3): 786–798

    Article  Google Scholar 

  6. Fumat G., Charge P., Zoubir A., Prunaret D.F. (2011) Transform domain communication systems from a multidimensional perspective impacts on bit error rate and spectrum efficiency. IET Communications 5(4): 476–483

    Article  Google Scholar 

  7. Chakravarthy V., Xue L., Zhou R., Temple M., Garber F., Kannan R., Vasilakos A. (2009) Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency- part I: Theoretical framework and analysis in AWGN channel. IEEE Transactions on Communication 57(12): 3794–3804

    Article  Google Scholar 

  8. Chakravarthy V., Xue L., Zhou R., Wu Z., Temple M. (2010) Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency-part II: Analysis in fading channels. IEEE Transactions on Communication 58(6): 1868–1876

    Article  Google Scholar 

  9. Hu, S., Guan, Y. L., Bi, G., & Li, S. Q. (2012) Cluster-based transform domain communication systems for high spectrum efficiency. IET Communication, (accepted).

  10. Han C., Wang J., Yang Y. L., Li S. Q. (2008) Addressing the control channel design problem: OFDM-based transform domain communication system in cognitive radio. Computer Networks 52(4): 795–815

    Article  MATH  Google Scholar 

  11. Chakravarthy V., Nunez A. S., Stephens J. P. (2005) TDCS, OFDM, and MC-CDMA: A brief tutorial. IEEE Radio Communications 43: S11–S16

    Article  Google Scholar 

  12. Billingsley P. (1995) Probability and measure (3rd ed.). Wiley, New York

    MATH  Google Scholar 

  13. Wulich D. (1996) Peak factor in orthogonal multicarrier modulation with variable levels. Electronics Letters 32(20): 1859–1861

    Article  Google Scholar 

  14. Chen H., Haimovich A. M. (2003) Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Communications Letters 7(7): 305–307

    Article  Google Scholar 

  15. Slimane S. B. (2007) Reducing the peak-to-average power ratio of OFDM signals through precoding. IEEE Transactions on Vehicular Technology 56(2): 686–695

    Article  Google Scholar 

  16. Xiao Y., Lei X., Wen Q. S., Li S. Q. (2007) A class of low complexity PTS techniques for PAPR reduction in OFDM systems. IEEE Signal Processing Letters 14(10): 680–683

    Article  Google Scholar 

  17. Wang X., Tjhung T. T., Ng C. S. (1999) Reduction of peak-to-average power ratio of OFDM system using a companding technique. IEEE Transactions on Broadcasting 45(3): 303–307

    Article  MATH  Google Scholar 

  18. Chen H., Pottie G. J. (2002) An orthogonal projection-based approach for PAR reduction in OFDM. IEEE Communications Letters 6(5): 169–171

    Article  Google Scholar 

  19. Tellado, J. (2000). Peak to average power reduction for multicarrier modulation. Ph.D. Dissertation, Stanford University.

  20. Martin R. K., Haker M. (2009) Reduction of peak-to-average power ratio in transform domain communication systems. IEEE Transactions on Wireless Communications 8(9): 4400–4405

    Article  Google Scholar 

  21. Rajbanshi, R., Wyglinski, A. M., & Minden, G. J. (2007). Peak-to-average power ratio analysis for NC-OFDM transmissions. In Proceedings of IEEE 66th Vehicular Technology Conferene, pp. 1351–1355.

  22. Ochiai H., Imai H. (2002) Performance analysis of deliberately clipped OFDM signals. IEEE Transactions on Communications 50(1): 89–101

    Article  Google Scholar 

  23. Stevenson C. R., Chouinard G., Lei Z., Hu W., Shellhammer S. J., Caldwell W. (2009) IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine 47(1): 130–138

    Article  Google Scholar 

  24. Swackhammer, P. J., Temple, M. A., & Raines, R. A. (1999). Performance simulation of a transform domain communication system for multiple access applications. In Proceedings of IEEE Military Communications Conference, (Vol. 2, pp. 1055–1059).

  25. Rapp, C. (1991). Effect of the HPA-nonlinearity on a 4-DPSK/OFDM signal for digital sound broadcasting system. In Proceedings of Second European Conference on Satellite Communication, pp. 179–184.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Wu, G., Xiao, Y. et al. Design of Low PAPR Fundamental Modulation Waveform for Transform Domain Communication System. Wireless Pers Commun 71, 2215–2229 (2013). https://doi.org/10.1007/s11277-012-0932-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0932-8

Keywords

Navigation