Skip to main content
Log in

Frequency-Domain Equalization for Orthogonal and Quasi-Orthogonal STBCs over Frequency-Selective Wireless and Power-Line Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, combination of single-carrier frequency-domain equalization (SC-FDE) and space-time block coding/code (STBC) techniques to exploit the advantages of both, has received a great attention. In this paper we propose new techniques for combining SC-FDE with orthogonal and Quasi-orthogonal STBCs applicable to any number of transmit antennas. For Quasi-orthogonal STBC we first propose a new structure for codes with four transmit antennas and then extend it to higher numbers. We convert Quasi-orthogonal system to two equivalent orthogonal subsystems and equalize and decode these subsystems based on our proposed procedure for orthogonal codes. Finally, we present our simulation results for different frequency-selective wireless and power-line channels and show that a significant SNR gain is achieved when SC-FDE is combined with diversity techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pancaldi F., Vitetta G. M., Kalbasi R., Al-Dhahir N., Uysal M., Mheidat K. (2008) Single-carrier frequency domain equalization. IEEE Signal Processing Magazine 25(5): 37–56

    Article  Google Scholar 

  2. Falconer D., Ariyavisitakul S. L., Benyamin-Seeyar A., Eidson B. (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communication Magazine 40(4): 58–66

    Article  Google Scholar 

  3. Acolatse K., Bar-Ness Y. (2011) Single carrier frequency domain equalization space–time block-spread CDMA with multiuser interference-free detection. Springer Wireless Personal Communications 57: 481–499

    Article  Google Scholar 

  4. Wen J. H., Chang Ch.-W., Hang H.-L. (2010) Blind multiuser detection in frequency domain for mc-cdma systems using particle swarm optimization. Springer Wireless Personal Communications 54: 447–466

    Article  Google Scholar 

  5. Zhang, J., & Zheng, Y. R. (2012). Joint frequency-domain multiuser turbo equalization with successive interference cancellation for doubly-selective fading Channels. Springer. Wireless Personal Communications. doi:10.1007/s11277-012-0509-6.

  6. Wang G., Yang H., Yi K. (2012) New combining scheme in STBC single carrier block transmission system. Springer Wireless Personal Communications 62: 387–394

    Article  Google Scholar 

  7. Al-Dhahir N. (2001) Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels. IEEE Communication Letter 5(7): 304–306

    Article  Google Scholar 

  8. Sheikh-Hosseini M., Molavi-Kakhki M. (2009) Single carrier transmission in power line channels using time and frequency domain decision feedback equalizations. International Journal of Tomography Statistics 12(F09): 94–104

    Google Scholar 

  9. Ng Y. H., Chuah T. Ch. (2010) Single-carrier cyclic prefix-assisted PLC systems with frequency-domain equalization for high-data-rate transmission. IEEE Transactions on Power Delivery 25(3): 1450–1457

    Article  Google Scholar 

  10. Biglieri E. (2003) Coding and modulation for a horrible channel. IEEE Communication Magazine 41(5): 92–98

    Article  MathSciNet  Google Scholar 

  11. Mheidat, H., Uysal, M., & Al-Dhahir, N. (2004). Time and frequency-domain equalization for quasi-orthogonal STBC over frequency-selective channels. In Proceedings of IEEE International Conference on Communications (ICC’04) (pp. 697–701), June 2004.

  12. Jafarkhani H. (2001) A quasi-orthogonal space-time block code. IEEE Transactions on Communications 49: 1–4

    Article  MATH  Google Scholar 

  13. Tirkkonen, O., Boariu, A., & Hottinen, A. (2000). Minimal nonorthogonality rate 1 space-time block code for 3Tx antennas. In Proceedings of IEEE 6th international Symposium on Spread-Spectrum Techniques and Applications (ISSSTA 2000) (pp. 429–432), Sept. 2000.

  14. Alamouti S. (1998) A simple transmitter diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  15. Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space time block codes from orthogonal design. IEEE Transactions on Information Theory 45(5): 1456–1466

    Article  MathSciNet  MATH  Google Scholar 

  16. Tirkkonen O., Hottinen A. (2002) Square-matrix embeddable space-time block codes for complex signal constellations. IEEE Transactions on Information Theory 48(2): 384–395

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganesan G., Stoica P. (2001) Space-time block codes: A maximum SNR approach. IEEE Transactions on Information Theory 47: 1650–1656

    Article  MathSciNet  MATH  Google Scholar 

  18. Su W., Xia X.-G. (2003) Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas. IEEE Transactions on Information Theory 49: 313–316

    Article  MathSciNet  MATH  Google Scholar 

  19. Devillers B., Louveaux J., Vandendorpe L. (2008) About the diversity in cyclic prefixed single-carrier systems. Elsevier Physical Communication Journal 1(4): 266–276

    Article  Google Scholar 

  20. Tajer A., Nosratinia A., Al-Dhahir N. (2011) Diversity analysis of symbol-by-symbol linear equalizers. IEEE Transactions on Communications 59(9): 2343–2348

    Article  Google Scholar 

  21. COST 207. (1989). Digital land mobile radio communications: Final report. Office for Official Publications of the European Communities, Luxembourg

  22. Babic, M., Hagenau, M., Dostert, K., & Bausch, J. (2005).D4 Theoretical postulation of PLC channel model. Tech. Rep., OPERA, March 2005.

  23. Canova, A., Benvenuto, N., & Bisaglia, P. (2010). Receivers for MIMO-PLC channels: Throughput comparison. In Proceedings of international symposium on power line communication and its applications (pp. 114–119), March 2010.

  24. Zimmermann M., Dostert K. (2002) Analysis and modeling of impulsivenoisein broad-band powerline communications. IEEE Transactions on Electromagnetic Compatibility EMC-44(1): 249–258

    Article  Google Scholar 

  25. Ghosh M. (1996) Analysis of the effect of impulsive noise on multicarrier and single carrier QAM systems. IEEE Transactions on Communications 44: 145–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sheikh-Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh-Hosseini, M., Molavi-Kakhki, M. & Hodtani, G.A. Frequency-Domain Equalization for Orthogonal and Quasi-Orthogonal STBCs over Frequency-Selective Wireless and Power-Line Channels. Wireless Pers Commun 71, 2445–2461 (2013). https://doi.org/10.1007/s11277-012-0947-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0947-1

Keywords

Navigation