Skip to main content
Log in

Performance Analysis of Incremental Amplify-and-Forward Relaying Protocols with Nth Best Partial Relay Selection Under Interference Constraint

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate two incremental amplify-and-forward relaying protocols in cognitive underlay networks. In the proposed protocols, whenever the secondary destination cannot receive the secondary source’s signal successfully, it requests a retransmission from one of M secondary relays. In the first protocol, we assume that a secondary relay with the Nth best channel gain to the secondary source is used to forward the received signal to the secondary destination. In the second protocol, relying on the quality of channels between the secondary relay and secondary destination and between the secondary relay and primary user, the Nth best relay is chosen for the retransmission. We derive exact closed-form expressions of the outage probability and average number of time slots for both protocols over Rayleigh fading channel. Finally, these mathematical expressions are then verified by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49, 2415–2425.

    Article  MathSciNet  Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  3. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communication, 24, 659–672.

    Article  Google Scholar 

  4. Duy, T. T., & Kong, H. Y. (2012). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, pp. 1–22, April 2012.

  5. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12, 235–237.

    Article  Google Scholar 

  6. Suraweera, H. A., Michalopoulos, D. S., & Karagiannidis, G. K. (2009). Semi-blind amplify-and-forward with partial relay selection. Electronics Letters, 45, 317–319.

    Article  Google Scholar 

  7. Ikki, S. S., & Ahmed, M. H. (2009). On the performance of adaptive decode-and-forward cooperative diversity with the Nth best-relay selection scheme. In Proceedings of IEEE global communication conference, pp. 1–6.

  8. Ikki, S. S., & Ahmed, M. H. (2009). On the performance of amplify-and-forward cooperative diversity with the Nth best-relay selection scheme. In Proceedings of IEEE international conference on communication, pp. 1–6.

  9. Khuong, H. V. (2012). Performance evaluation of underlay cognitive multi-hop networks over Nakagami-m fading channels. Wireless Personal Communications, pp. 1–12, June 2012.

  10. da Costa, D. B., Aïssa, S., & Cavalcante, C. C. (2012). Performance analysis of partial relay selection in cooperative spectrum sharing systems. Wireless Personal Communications, 64, 79–92.

    Article  Google Scholar 

  11. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10, 390–395.

    Article  Google Scholar 

  12. Ding, H., Ge, J., da Costa, B., & Zhuoqin Jiang, D. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.

    Article  Google Scholar 

  13. Li, D. (2011). Outage probability of cognitive radio networks with relay selection. IET Communications, 5, 2730–2735.

    Article  MathSciNet  Google Scholar 

  14. Duong, T. Q., Bao, V. N. Q., Alexandropoulos, G. C., & Zepernick, H. J. (2011). Cooperative spectrum sharing networks with AF relay and selection diversity. IET Electronics Letters, 47, 1149–1151.

    Article  Google Scholar 

  15. de Oliveira Brante, G. G., Pellenz, M. E., & Souza, R. D. (2012). Spectrally efficient incremental relaying for coverage expansion in cellular networks with heterogeneous path-loss conditions. Wireless Personal Communications, 64, 811–829.

    Article  Google Scholar 

  16. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum sharing constraints. Electronics Letters, 46, 182–184.

    Article  Google Scholar 

  17. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York, London: Academic Press, Inc.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Yun Kong.

Appendices

Appendix A: Derivation of (8)

Relying on [16], the CDF and PDF, respectively, of the RVs \(\psi _2\) are given as

$$\begin{aligned} F_{\psi _2} \left(x\right)&= \frac{\lambda _2 x}{\lambda _2 x+\lambda _4 Q},\end{aligned}$$
(25)
$$\begin{aligned} f_{\psi _2} \left(x\right)&= \frac{\lambda _2 \lambda _4 Q}{\left({\lambda _2 x+\lambda _4 Q}\right)^{2}} \end{aligned}$$
(26)

Setting \(w = \gamma _3\); the outage probability \(\text{ P}_{\mathrm{IAF1}}^{\mathrm{out}}\) conditioned on \(\gamma _3\) is calculated as

$$\begin{aligned} \text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)&= \Pr \left[{\psi _0 <\gamma _{th}, \gamma _1^{AF} < \gamma _{th} |\gamma _3} \right] \nonumber \\&= \Pr \left[{Q\frac{\gamma _0}{w}<\gamma _{th}}\right]\Pr \left[{\frac{\psi _1 \psi _2}{\psi _1 + \psi _2 +1}<\gamma _{th} |\gamma _3}\right] \nonumber \\&= \Pr \left[{\gamma _0 <\rho w}\right] \left[{F_{\psi _2} \left({\gamma _{th}}\right)+\int \limits _{\gamma _{th}}^{+\infty } {F_{\psi _1 |\gamma _3} \left({\frac{\gamma _{th} x+\gamma _{th}}{x-\gamma _{th}}} \right)f_{\psi _2} \left(x\right)dx}}\right]\nonumber \\ \end{aligned}$$
(27)

where \(\rho = \gamma _{th} /Q\) and \(F_{\psi _1 | \gamma _3} \left(.\right)\) is the CDF of \(\psi _1\) conditioned on \(\gamma _3\), which can be given by using (5) as

$$\begin{aligned} F_{\psi _1|\gamma _3} \left(x\right)&= \Pr \left[{Q\frac{\gamma _{1b}}{w}<x}\right]=F_{\gamma _{1b}} \left({\frac{wx}{Q}}\right) \nonumber \\&= 1+\sum _{n=1}^N {\sum _{m=0, n+m > 1}^{M-n+1} {\left({-1}\right)^{m}} C_M^{n-1} C_{M-n+1}^m \exp \left({-\frac{\left({n+m-1}\right)\lambda _1 w}{Q}x}\right)}\nonumber \\ \end{aligned}$$
(28)

Substituting (25), (26) and (28) into (27), we obtain (29) as

$$\begin{aligned} \text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)&= \left({1-\exp \left({-\lambda _0 \rho w}\right)}\right) \nonumber \\&\times \left[{1+\sum _{n=1}^N {\sum _{m=0, n+m > 1}^{M-n+1} {\left({-1}\right)^{m}} C_M^{n-1} C_{M-n+1}^m \lambda _2 \lambda _4 Q\underbrace{\int \limits _{\gamma _{th}}^{+\infty } {\dfrac{\exp \left({-\left({n+m-1}\right)\lambda _1 \rho w\dfrac{x+1}{x-\gamma _{th}}} \right)}{\left({\lambda _2 x+\lambda _4 Q} \right)^{2}}dx}}_{I_1}}} \right]\nonumber \\ \end{aligned}$$
(29)

Now, we consider the integral \(I_1\) in (29). First, by setting \(y=1+\frac{\lambda _2 \gamma _{th} +\lambda _4 Q}{\lambda _2 \left({x-\gamma _{th}} \right)}\), we can respectively get

$$\begin{aligned} \lambda _2 x + \lambda _4 Q&= \frac{\left({\lambda _2 \gamma _{th} +\lambda _4 Q}\right)y}{y-1},\end{aligned}$$
(30)
$$\begin{aligned} \frac{x+1}{x-\gamma _{th}}&= \frac{\lambda _2 \left({1+\gamma _{th}} \right)y+\lambda _4 Q-\lambda _2}{\lambda _4 Q+\lambda _2 \gamma _{th}},\end{aligned}$$
(31)
$$\begin{aligned} dy&= -\frac{\lambda _2 \gamma _{th} + \lambda _4 Q}{\lambda _2 \left({x-\gamma _{th}}\right)^{2}}dx = -\frac{\lambda _2 \left({y-1}\right)^{2}}{\lambda _2 \gamma _{th} + \lambda _4 Q}dx \end{aligned}$$
(32)

Therefore, by using the change of variable \(y=1+\frac{\lambda _2 \gamma _{th} + \lambda _4 Q}{\lambda _2 \left({x-\gamma _{th}}\right)}\) and results given in (3032), we can express the integral \(I_1\) under the following form:

$$\begin{aligned} I_1&= \int \limits _{+\infty }^0 {\frac{\left({y-1}\right)^{2}}{\left({\lambda _2 \gamma _{th} +\lambda _4 Q} \right)^{2}y^{2}}\exp \left({-\left({n+m-1}\right)\lambda _1 \rho w\frac{\lambda _2 \left({1+\gamma _{th}} \right)y+\lambda _4 Q-\lambda _2}{\lambda _4 Q+\lambda _2 \gamma _{th}}}\right)\left({-\frac{\lambda _2 \gamma _{th} +\lambda _4 Q}{\lambda _2 \left({y-1}\right)^{2}}dy}\right)} \nonumber \\&= \frac{1}{\lambda _2 \left({\lambda _2 \gamma _{th} +\lambda _4 Q} \right)}\exp \left({-\left({n+m-1} \right)\lambda _1 \rho w\frac{\lambda _4 Q-\lambda _2}{\lambda _4 Q+\lambda _2 \gamma _{th}}} \right) \nonumber \\&\times \int \limits _0^{+\infty } {\frac{1}{y^{2}}\exp \left({-\left({n+m-1} \right)\lambda _1 \rho w\frac{\lambda _2 \left({1+\gamma _{th}} \right)y}{\lambda _4 Q+\lambda _2 \gamma _{th}}} \right)dy} \end{aligned}$$
(33)

Substituting (33) into (29), we can rewrite \(\text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)\) as follows:

$$\begin{aligned}&\text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)= \left({1-\exp \left({-\lambda _0 \rho w}\right)}\right)\nonumber \\&\quad \left[{\begin{array}{l} 1+\sum _{n=1}^N {\sum _{m=0, n+m > 1}^{M-n+1} {\left({-1} \right)^{m}} C_M^{n-1} C_{M-n+1}^m \dfrac{\lambda _4 Q\exp \left({-\Omega \left({\lambda _4 Q-\lambda _2} \right)w} \right)}{\lambda _2 \gamma _{th} +\lambda _4 Q}} \\ \times \int _1^{+\infty } {\dfrac{\exp \left({-\Omega \lambda _2 \left({1+\gamma _{th}} \right)wy} \right)}{y^{2}}} dy \\ \end{array}} \right],\qquad \quad \end{aligned}$$
(34)

where \(\Omega = \frac{\left({n+m-1}\right) \lambda _1 \rho }{\lambda _2 \gamma _{th} + \lambda _4 Q}\).

Because

\(\int \limits _1^{+\infty } {\frac{\exp \left({-\Omega \lambda _2 \left({1+\gamma _{th}}\right)wy}\right)}{y^{2}}} dy\!=\!\exp \left({\!-\!\Omega \lambda _2 \left({1\!+\!\gamma _{th}}\right)w} \right)\!-\!\Omega \lambda _2 \left({1\!+\!\gamma _{th}}\right)wE_1 \left({\Omega \lambda _2 \left({1\!+\!\gamma _{th}}\right)w} \right)\), where \(E_1 \left(.\right)\) is exponential integral, we obtain (35) from (34) as follows:

$$\begin{aligned} \text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)&= 1-\exp \left({-\lambda _0 \rho w}\right)+\sum _{n=1}^N {\sum _{m=0, n+m > 1}^{M-n+1} {\left({-1}\right)^{m}} C_M^{n-1} C_{M-n+1}^m \frac{\lambda _4 Q}{\lambda _2 \gamma _{th} +\lambda _4 Q}} \nonumber \\&\times \left[{\begin{array}{l} \exp \left({-\Omega \left({\lambda _2 \gamma _{th} +\lambda _4 Q} \right)w} \right)-\exp \left({-\left({\Omega \left({\lambda _2\gamma _{th} +\lambda _4 Q}\right)+\lambda _0 \rho }\right)w}\right)\\ \,-\,\Omega \lambda _2 \left({1+\gamma _{th}}\right)w\exp \left({-\Omega \left({\lambda _4 Q-\lambda _2}\right)w}\right)E_1 \left({\Omega \lambda _2 \left({1+\gamma _{th}}\right)w} \right)\\ \,+\,\Omega \lambda _2 \left({1+\gamma _{th}} \right)w\exp \left({-\left({\Omega \left({\lambda _4 Q-\lambda _2} \right)+\lambda _0 \rho } \right)w} \right)E_1 \left({\Omega \lambda _2 \left({1+\gamma _{th}} \right)w} \right) \\ \end{array}}\right]\nonumber \\ \end{aligned}$$
(35)

Similar to [14], the probability \(\text{ P}_{\mathrm{IAF1}}^{\mathrm{out}}\) can be formulated as

$$\begin{aligned} \text{ P}_{\mathrm{IAF1}}^{\mathrm{out}} =\int \limits _0^{+\infty } {\text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)f_{\gamma _3} \left(w\right)dw} = \int \limits _0^{+\infty } {\text{ P}_{\mathrm{IAF1|}\gamma _3}^{\mathrm{out}} \left(w\right)\lambda _3 \exp \left({-\lambda _3 w}\right)dw} \end{aligned}$$
(36)

In addition, with a, b and c as positive constants, we have (33) as

$$\begin{aligned} \int \limits _0^{+\infty } {\left({ax}\right)b\exp \left({-cx}\right)E_1 \left({ax}\right)dx} = \frac{ab}{c^{2}}\left[{\ln \left({\frac{a+c}{a}}\right)-\frac{c}{a+c}}\right] \end{aligned}$$
(37)

Now, we substitute (35) into (36), then we use (37) to calculate the corresponding integral. After some careful manipulation, we obtain (8).

Appendix B: Derivation of (12)

Similar to (27), by setting \(w=\gamma _3\), the outage probability \(\text{ P}_{\mathrm{IAF2}}^{\mathrm{out}}\) conditioned on \(\gamma _3\) is calculated as

$$\begin{aligned} \text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)=\Pr \left[{\gamma _0 <w\rho }\right] \left[{F_{\psi _3}\left({\gamma _{th}} \right)+\int \limits _{\gamma _{th}}^{+\infty } {F_{\psi _3 |\gamma _3} \left({\frac{\gamma _{th} x+\gamma _{th}}{x-\gamma _{th}}} \right)f_{\psi _4}\left(x\right)dx}}\right].\nonumber \\ \end{aligned}$$
(38)

By using \(F_{\psi _3 |\gamma _3} \left(x\right)=1-\exp \left({-\frac{\lambda _3 wx}{Q}}\right)\) and (10) for (38), we obtain

$$\begin{aligned} \text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)&= \left({1-\exp \left({-\lambda _0 \rho w}\right)} \right) \nonumber \\&\times \left[{1\!-\!\frac{M!}{\left({N-1}\right)!\left({M-N} \right)!}\left({\kappa Q}\right)^{N}\int \limits _{\gamma _{th}}^{+\infty } {\frac{x^{M-N}}{\left({x+\kappa Q}\right)^{M+1}}\exp \left({-\lambda _3 \rho w\frac{x+1}{x-\gamma _{th}}}\right)dx}} \right]\!.\nonumber \\ \end{aligned}$$
(39)

Now, by applying the change of variable \(y=\frac{x+\kappa Q}{x-\gamma _{th}}\), we rewrite (39) as

$$\begin{aligned} \text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)&\!=\!&\left({1-\exp \left({-\lambda _0 \rho w}\right)}\right) \left[{\begin{array}{l} 1-\frac{M!}{\left({N-1}\right)!\left({M-N}\right)!} \frac{\gamma _{th}^{M-N}\left({\kappa Q}\right)^{N}}{\left({\gamma _{th} + \kappa Q}\right)^{M}}\exp \left({-\Delta \left({\kappa Q-1}\right)w}\right) \\ \times \int \limits _1^{+\infty } {\frac{\left({y+\frac{\kappa }{\rho }} \right)^{M-N}\left({y-1}\right)^{N-1}}{y^{M+1}}\exp \left({-\Delta \left({1+\gamma _{th}}\right)wy}\right)dy} \end{array}} \right]\nonumber \\ \end{aligned}$$
(40)

where \(\Delta = \frac{\lambda _3 \rho }{\gamma _{th} + \kappa Q}\).

Using binomial expansion for \(\left({y+\frac{\kappa }{\rho }}\right)^{M-N}\) and \(\left({y-1}\right)^{N-1}\) in (40), we have

$$\begin{aligned} \text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)&= \left({1-\exp \left({-\lambda _0 \rho w}\right)}\right) \nonumber \\&\times \left[{\begin{array}{l} 1-\dfrac{M!}{\left({N-1} \right)!\left({M-N} \right)!}\dfrac{\gamma _{th}^{M-N} \left({\kappa Q} \right)^{N}}{\left({\gamma _{th} +\kappa Q} \right)^{M}}\exp \left({-\Delta \left({\kappa Q-1}\right)w} \right) \\ \times \sum \limits _{i=0}^{M-N} {\sum \limits _{j=0}^{N-1} {\left({-1} \right)^{N-1-j}C_{M-N}^i C_{N-1-j}^j \left({\dfrac{\kappa }{\rho }} \right)}}^{M-N-i}\underbrace{\int \limits _1^{+\infty } {\dfrac{\exp \left({-\Delta \left({1+\gamma _{th}} \right)wy} \right)}{y^{M-i-j+1}}dy}}_{J_1} \\ \end{array}}\right].\nonumber \\ \end{aligned}$$
(41)

Applying [17, 3.351.4], for the integral \(J_1\) in (42) and \(E_1\left(x\right) = -E_i \left({-x}\right)\), we can obtain (42) as

$$\begin{aligned} \text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)&= 1-\exp \left({-\lambda _0 \rho w}\right)\nonumber \\&-\dfrac{M!}{\left({N-1} \right)!\left({M-N} \right)!}\frac{\gamma _{th}^{M-N} \left({\kappa Q} \right)^{N}}{\left({\gamma _{th} +\kappa Q} \right)^{M}}\sum _{i=0}^{M-N} {\sum _{j=0}^{N-1} {\left({-1} \right)^{N-1-j}C_{M-N}^i C_{N-1-j}^j \left({\frac{\kappa }{\rho }} \right)}}^{M-N-i} \nonumber \\&\!\times \! \left\{ {\begin{array}{l} \left({-1} \right)^{M-i-j}\frac{\left({\Delta \left({1+\gamma _{th}} \right)} \right)^{M-i-j}}{\left({M-i-j} \right)!} \left[{\begin{array}{l} w^{M-i-j}\exp \left({-\Delta \left({\kappa Q-1}\right)w} \right)E_1 \left({\Delta \left({1+\gamma _{th}}\right)w}\right)\\ -w^{M-i-j}\exp \left({-\left({\Delta \left({\kappa Q-1} \right)+\lambda _0 \rho } \right)w} \right)E_1 \left({\Delta \left({1+\gamma _{th}} \right)w} \right) \\ \end{array}} \right] \\ +\sum \limits _{u=0}^{M-i-j-1} {\frac{\left({-1}\right)^{u}\left({\Delta \left({1+\gamma _{th}}\right)}\right)^{u}}{\prod _{z=0}^u {\left({M-i-j-z}\right)}} \left[{\begin{array}{l} w^{u}\exp \left({-\Delta \left({\gamma _{th} +\kappa Q} \right)w} \right) \\ -w^{u}\exp \left({-\left({\Delta \left({\gamma _{th} +\kappa Q} \right)+\lambda _0 \rho } \right)w} \right) \\ \end{array}} \right]} \\ \end{array}} \right\} \nonumber \\ \end{aligned}$$
(42)

Also, the probability \(\text{ P}_{\mathrm{IAF2}}^{\mathrm{out}}\) can be formulated as

$$\begin{aligned} \text{ P}_{\mathrm{IAF2}}^{\mathrm{out}} = \int \limits _0^{+\infty } {\text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right) f_{\gamma _3} \left(w\right)dw} = \int \limits _0^{+\infty } {\text{ P}_{\mathrm{IAF2|}\gamma _3}^{\mathrm{out}} \left(w\right)\lambda _3 \exp \left({-\lambda _3 w}\right)dw} \end{aligned}$$
(43)

Now, we substitute (42) into (43) and use [17, 6.228.2] with \(E_1\left(x\right)=-E_i \left({-x}\right)\) for the corresponding integrals to obtain (12).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duy, T.T., Kong, HY. Performance Analysis of Incremental Amplify-and-Forward Relaying Protocols with Nth Best Partial Relay Selection Under Interference Constraint. Wireless Pers Commun 71, 2741–2757 (2013). https://doi.org/10.1007/s11277-012-0968-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0968-9

Keywords

Navigation