Abstract
Designing a compact wideband microstrip patch antenna which is composed of a folded-patch feed, a symmetric E-shaped edge and shorting pins is presented in this paper. One pin is applied in order to expand the impedance bandwidth. Two other pins are utilized to miniaturize the size of patch as well. The measured impedance bandwidth (\(\text{ VSWR}\le 2\)) of the fabricated antenna is more than 90 % in the frequency range 3.92–10.67 GHz for ultra-wideband (UWB) applications. The antenna size is \(0.438\lambda _{0}\times 0.365\lambda _{0}\times 0.170\lambda _{0}\) at its center operating frequency. Also, radiation patterns with acceptable stability within the bandwidth are obtained. In addition, the effects of some key parameters are investigated to describe the performance of the proposed design.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-012-0990-y/MediaObjects/11277_2012_990_Fig8_HTML.jpg)
Similar content being viewed by others
References
Liang-An Wei, M. S. (2006). Applications of ultra wideband. The University of Texas at Arlington.
Vizireanu, D. N., & Halunga, S. V. (2012). Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation. Journal of Instrumentation, 7(04), P04001.
Wong, K. L., Tang, C. L., & Chen, H. T. (1997). A compact meandered circular microstrip antenna with a shorting pin. Microwave and Optical Technology Letters, 15, 147–149.
Waterhouse, R. (1995). Small microstrip patch antenna. Electronics Letters, 31, 604–605.
Schaubert, D. H., Pozar, D. M., & Adrian, A. (1989). Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment. IEEE Transactions o Antennas and Propagation, AP-37, 677–682.
Yang, F., Zhang, X. X., Ye, X. N., & Rahmat-Samii, Y. (2001). Wide-band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation, 49, 1094–1100.
Tong, K. F., Luk, K. M., Lee, K. F., & Lee, R. Q. (2000). A broad-band U-slot rectangular patch antenna on a microwave substrate. IEEE Transactions on Antennas and Propagation, 48, 954–960.
Matin, M. A., Sharif, B. S., & Tsimenidis, C. C. (2007). Probe fed stacked patch antenna for wideband applications. IEEE Transactions on Antennas and Propagation, 55, 2385–2388.
Guha, D., & Antar, Y. M. M. (2006). Circular microstrip patch loaded with balanced shorting pins for improved bandwidth. IEEE Antennas and Wireless Propagation Letters, 5, 217–219.
Islam, M. T., Shakib, M. N., & Misran, N. (2009). Design analysis of high gain wideband L-probe fed microstrip patch antenna. Progress In Electromagnetics Research. PIER, 95, 397–407.
Lau, K. L., Wong, S. H., & Luk, K. M. (2007). Wideband folded shorted patch antenna with double L-slots. Electronics Letters, 43, 515–517.
Chiu, C. Y., Shum, K. M., Chan, C. H., & Luk, K. M. (2003). Bandwidth enhancement technique for quarter-wave patch antennas. IEEE Antennas and Wireless Propagation Letters, 2, 130–132.
Chiu, C. Y., Chan, C. H., & Luk, K. M. (2004). Study of small wideband patch antenna with double shorting walls. IEEE Antennas and Wireless Propagation Letters, 3, 230–231.
Chiu, C. Y., Wong, H., & Chan, C. H. (2007). Study of small wideband folded-patch-feed antennas. IET Microwave Antennas and Propagation, 1(2), 501–505.
Naser-Moghadasi, M., Dadgarpour, A., Jolani, F., & Virdee, B. S. (2009). Ultra wideband patch antenna with a novel folded-patch technique. IET Microwave Antennas and Propagation, 3(1), 164–170.
Malekpoor, H., & Jam, S. (2012). Ultra-wideband shorted patch antennas fed by folded-patch with multi resonances. Progress In Electromagnetics Research B, 44, 309–326.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Malekpoor, H., Jam, S. Design of an Ultra-Wideband Microstrip Patch Antenna Suspended by Shorting Pins. Wireless Pers Commun 71, 3059–3068 (2013). https://doi.org/10.1007/s11277-012-0990-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-012-0990-y