Skip to main content

Advertisement

Log in

DMED: A Dual-Mode Energy-Driven Routing Protocol for Wireless Planetary Exploration Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy-efficient is a challenging issue in Wireless Sensor Network, which is a promising technology being widely used in the planetary exploration. Considering the rechargeable solar batteries equipped in the planetary surface sensor system, this paper presents a novel and special dual-mode energy-driven (DMED) routing protocol for the planetary exploration. According to the charging and sleeping states of the solar battery, the dual modes (i.e. day mode and night mode) of the node are obtained. Differential theory is adopted in the DMED weighted average of reciprocals consultation mechanism to choose the optimal value of \(p\) which can be adjusted dynamically under dual modes. The experimental results indicate that DMED is superior to ad hoc on-demand distance vector in the performance of energy balancing, and it prolongs the network lifetime effectively. The research of this work is benefit to the planetary exploration, and the research results provide reference value to the special routing protocol design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. The National Research Council of the United States of America. (2011). Vision and voyages for planetary science in the decade 2013–2022. Washington, D.C.: The National Academies Press. http://science.gsfc.nasa.gov/693/Decadal_Survey-Planet_Sci_2011.pdf.

  2. Dubois, P., Botteron, C., Mitev, V., et al. (2009). Ad hoc wireless sensor networks for exploration of solar-system bodies. Acta Astronautica, 64(5–6), 626–643.

    Article  Google Scholar 

  3. Warneke, B., Last, M., Liebowitz, B., et al. (2001). Smart dust: Communicating with a cubic-millimeter computer. Computer Magazine, 34(1), 44–51.

    Article  Google Scholar 

  4. Warneke, B. A., & Pister, K. S. J. (2004). An ultra-low energy microcontroller for smart dust wireless sensor networks. In Proceedings of IEEE international solid-state circuits conference (pp. 316–317).

  5. Durga Prasad, K., & Murty, S. V. S. (2011). Wireless sensor networks—a potential tool to probe for water on Moon. Advances in Space Research, 48(3), 601–612.

    Article  Google Scholar 

  6. Newman, R., & Hammoudeh, M. (2008). Pennies from heaven: A retrospective on the use of wireless sensor networks for planetary exploration. In Proceedings of NASA/ESA conference on adaptive hardware and systems (pp. 263–270).

  7. Del Re, E., Pucci, R., & Ronga, L. S. (2009). IEEE802.15.4 wireless sensor network in Mars exploration scenario. In Proceedings of international workshop on satellite and, space communications (pp. 284–288).

  8. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of IEEE INFOCOM (pp. 1567–1576).

  9. Sinha, A., & Chandrakasan, A. (2001). Dynamic power management in wireless sensor networks. IEEE Design & Test of Computers, 18(2), 62–74.

    Article  Google Scholar 

  10. Dargie, W. (2011). Dynamic power management in wireless sensor networks: State-of-the-art. IEEE Sensors Journal, 12(5), 1518–1528.

    Google Scholar 

  11. Calhoun, B. H., Daly, D. C., et al. (2005). Design considerations for ultra-low energy wireless microsensor nodes. IEEE Transactions on Computers, 54(6), 727–740.

    Article  Google Scholar 

  12. Alena, R., Gilbaugh, B., Glass, B., et al. (2001). Communication system architecture for planetary exploration. IEEE Aerospace and Electronic Systems Magazine, 16(11), 4–11.

    Article  Google Scholar 

  13. Shih, E., Cho, S.-H., & Ickes, N., et al. (2001). Physical layer driven protocol and algorithm design for energy efficient wireless sensor networks. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 272–286).

  14. Zarifzadeh, S., Nayyeri, A., Yazdani, N., et al. (2009). Joint range assignment and routing to conserve energy in wireless ad hoc networks. Computer Networks, 53(11), 1812–1829.

    Article  MATH  Google Scholar 

  15. Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks, 2(1), 1–22.

    Article  Google Scholar 

  16. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing, RFC 3561, July. http://tools.ietf.org/html/rfc3561.

  17. Marina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6, 969–988.

    Google Scholar 

  18. Min, C.-H., & Kim, S. (2007). On-demand utility-based power control routing for energy-aware optimization in mobile ad hoc networks. Journal of Network and Computer Applications, 30(2), 706–727.

    Article  Google Scholar 

  19. Vidhyapriya, R., & Vanathi, P. T. (2007). Energy aware routing for wireless sensor networks. In Proceedings of international conference on signal processing, communications and networking (pp. 545–550).

  20. Hong, X., Gerla, M., & Wang, H., et al. (2002). Load balanced. In Proceedings of IEEE aerospace conference: Energy-aware communications for mars sensor networks (pp. 1109–1115).

  21. Chang, J.-H., & Tassiulas, L. (2000). Energy conserving routing in wireless ad-hoc networks. In Proceedings of IEEE INFOCOM (pp. 22–31).

  22. Ratnakumar, B. V., Smart, M. C., Whitcanack, L. D., et al. (2006). The impedance characteristics of Mars Exploration Rover Li-ion batteries. Journal of Power Sources, 159(2), 1428–1439.

    Article  Google Scholar 

  23. Sanmartin, J. R., Charro, M., Lorenzini, E. C., et al. (2008). Electrodynamic tether at Jupiter–I: Capture operation and constraints. IEEE Transactions on Plasma Science, 36(5), 2450–2458.

    Article  Google Scholar 

  24. Sanmartin, J. R., Charro, M., Lorenzini, E. C., et al. (2009). Electrodynamic tether at Jupiter–II: Fast Moon tour after capture. IEEE Transactions on Plasma Science, 37(4), 620–626.

    Article  Google Scholar 

  25. Bentley, M. S., Ball, A. J., Potter, D. K., et al. (2009). In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity. Planetary and Space Science, 57(12), 1491–1499.

    Article  Google Scholar 

  26. Ratnakumar, B. V., Smart, M. C., Kindler, A., et al. (2003). Lithium batteries for aerospace applications: 2003 Mars Exploration Rover. Journal of Power Sources, 119–121, 906–910.

    Article  Google Scholar 

  27. Smart, M. C., Ratnakumar, B. V., Whitcanack, L. D., et al. (2003). Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources, 119–121, 349–358.

    Article  Google Scholar 

  28. Smart, M. C., Ratnakumar, B. V., & Beharar, A., et al. (2007). Gel polymer electrolyte lithium-ion cells with improved low temperature performance. Journal of Power Sources 165(2), 535–543.

    Google Scholar 

  29. Moe, K. (2008). NASA technology for the earth observation sensor web. In Proceedings of IEEE international geoscience and remote sensing symposium (pp. 128–131).

  30. Yeung, D. W. K., & Petrosyan, L. A. (2006). Cooperative stochastic differential games. New York: Springer.

    MATH  Google Scholar 

  31. Naoumov, V., & Gross, T. (2003). Simulation of large ad hoc networks. In Proceedings of the 6th ACM international workshop on modeling analysis and simulation of wireless and mobile systems (pp. 50–57).

Download references

Acknowledgments

The authors are grateful to the anonymous reviewer for several constructive suggestions that have improved the quality of this paper. This work has been supported by the Science and Technology Research Major Program of Ministry of Education of P. R. China (Grant No. 311007), the National High-Tech Research and Development Program of P. R. China (Grant No. 2012AA121604), and the National Science Foundation Project of P. R. China (Grant Nos. 61202079, 61170014, 61003250 and 60902042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Zhou, X., Xie, Y. et al. DMED: A Dual-Mode Energy-Driven Routing Protocol for Wireless Planetary Exploration Sensor Network. Wireless Pers Commun 72, 447–460 (2013). https://doi.org/10.1007/s11277-013-1023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1023-1

Keywords