Skip to main content
Log in

A Cooperative Differential Game Model for Multiuser Rate-Based Flow Control

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Flow control is one typical resource management tool. Its objectives are to adjust the traffic in the network, and resolve data traffic congestion, maximize the utilization of available bandwidth resource and realize fairness among different sources. Taking more consideration on the interaction and the dynamic characteristics of the flow, in this paper, we propose a cooperative differential game of flow control. Our goal is to assign sources with appropriate transmission rate levels so as to the queue length in the bottleneck link is optimal for the network performance and their benefits are maximal. We derive a payment distribution mechanism that would constitute a time-consistent solution and guarantee individual rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bonomi, F., & Fendick, K. W. (1995). The rate-based flow control framework for the available bit rate ATM service. IEEE Network, 9(2), 25–39.

    Article  Google Scholar 

  2. Parekh, A. K., & Gallager, G. (1994). A generalized processor sharing approach to flow control in integrated services networks: The multiple node case. IEEE/ACM Transactions on Networking, 2, 137–150.

    Article  Google Scholar 

  3. Ramakrishnan, K. K., & Newman, P. (1995). Integration of rate and credit schemes for ATM flow control. IEEE Network, 9(2), 49–56.

    Article  Google Scholar 

  4. Quet, P. F., Ataslar, B., et al. (2002). Rate-based flow controllers for communication networks in the presence of uncertain time-varying multiple time-delays. Taesam Kang, Automatica, 38, 917–928.

    Article  MathSciNet  MATH  Google Scholar 

  5. Woodruff, G. M., Rogers, R. G. H., & Richards, P. S. (1988). A congestion control framework for high-speed integrated packetized transport. IEEE GLOBECOM, pp. 203–207.

  6. Bae, J. J., & Suda, T. (1991). Survey of traffic control schemes and protocols in ATM networks. Proceedings of the IEEE, 79(2), 170–189.

    Article  Google Scholar 

  7. Jain, R., Kalyanaraman, S., & Viswanathan, R. (1997). The OSU scheme for congestion avoidance in ATM networks. Lessons Learnt and Extensions, Performance Evaluation, 8, 67–88.

    Article  Google Scholar 

  8. Fischer, W., Wallmeier, E., Worster, T., Davis, S. P., & Hayter, A. (1994). Data communications using ATM: Architectures, protocols, and resource management. IEEE Communications Magazine, pp. 24–33.

  9. Lai, Y. C., & Lin, Y. D. (1997). Performance analysis of rate-based congestion control and choice of high and low thresholds. IEEE ICCCN’97, Las Vegas, pp. 70–75.

  10. Korilis, Y. A., & Lazar, A. (1995). On the existence of equilibria in noncooperative optimal flow control. Journal of Association Computer Machine, 42, 584–613.

    Article  MathSciNet  MATH  Google Scholar 

  11. Korilis, Y. A., Lazar, A. A., & Orda, A. (1995). Architecting noncooperative networks. IEEE Journal of Select Areas Communication, 13, 1241–1251.

    Article  Google Scholar 

  12. Mazumdar, R., Mason, L., & Douligeris, C. (1991). Fairness in network optimal flow control: Optimality of product forms. IEEE Transactions on Communications, 39, 775–782.

    Article  Google Scholar 

  13. Sar, T. B., & Zhu, Q. (2011). Prices of anarchy, information, and cooperation in differential games. Dynamic Games and Applications, pp. 50–73.

  14. Altman, E., & Basar, T. (1998). Multiuser rate-based flow control. IEEE Transactions on Communications, 46(7), 940–949.

    Article  Google Scholar 

  15. Miao, X. N., Zhou, X. W., & Wu, H. Y. (2010). A cooperative differential game model based on network throughput and energy efficiency in wireless networks. Optimization Letters, 38, 292–295.

    MathSciNet  MATH  Google Scholar 

  16. Dixit, A. K., & Skeath, S. (2004). Games of strategy (2nd ed.). New York Norton.

  17. Zhou, X. W., Cheng, Z. M., Ding, Y., & Lin, F. H. (2012). A optimal power control strategy based on network wisdom in wireless networks. Operations Research Letters, 40, 475–477.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dockner, E., & Long, N. V. (1993). International pollution control: Cooperative versus noncooperative strategies. Journal of Environmental Economics and Management, 24, 13–29.

    Article  Google Scholar 

  19. Breton, M., Zaccour, G., & Zahaf, M. (2005). A differential game of joint implementation of environmental projects. Automatica, 41, 737–1749.

    Article  MathSciNet  Google Scholar 

  20. Isaacs, R. (1965). Differential games. New York: Wiley.

    MATH  Google Scholar 

  21. Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.

    MATH  Google Scholar 

  22. Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yeung, D. W. K., & Petrosyan, L. A. (2006). Cooperative stochastic differential games. New York: Springer.

    MATH  Google Scholar 

  24. Petrosyan, L. A. (1997). Agreeable solutions in differential games. International Journal of Mathematics, Game Theory and Algebra, 7, 65–177.

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editors and anonymous reviewers for their very useful comments. This work is supported by the Foundation for Key Program of Ministry of Education, P. R. China (No. 311007), and the National Science Foundation Project of P. R. China (61202079, 61170014 and 61072039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Mi Cheng.

Appendix 1

Appendix 1

Proof of Proposition 1.

Proof

Assume that \(V^{i}(q_l )\) is a polynomial with respect to the state variable \(q_l\). In line with Eqs. (6) and (7), we assume that

$$\begin{aligned} V^{i}(q_l )=1/2 A_{i} q_{l}^{2} +B_{i} q_{l} +C_{i}. \end{aligned}$$
(20)

\(\square \)

Substituting the results from (7) and (20) into (6), and upon solving (6) yields:

$$\begin{aligned}&1/2rA_i q_l^2 +rB_i q_l +rC_i =\upmu _i (\upmu _i -\alpha _i +A_i q_l+B_i )-1/2(\upmu _i -\alpha _i +A_i q_l+B_i )^{2} \\&\quad -\alpha _i (\upmu _i \!-\!\alpha _i \!-\!w_i s\!+\!A_i q_l\!+\!B_i )\!-\!\upbeta _i q_l^2 \!+\!(A_i q_l\!+\!B_i )\left[\sum _{j=1}^N {(\upmu _j \!-\!\alpha _j \!-\!w_i s\!+\!A_j q_l+B_j )} \right]\\&\quad =\upmu _i^2 \!-\!\upmu _i \alpha _i \!+\!\upmu _i A_i q_l\!+\!\upmu _i B_i \!-\!1/2(\upmu _i \!-\!\alpha _i +B_i )^{2}\!-\!(\upmu _i \!-\!\alpha _i \!+\!B_i )A_{i} q_{l} -1/2(A_i q_l)^{2} \\&\quad -\alpha _i \upmu _i \!+\!\alpha _i^2 \!+\!\alpha _i w_i s\!-\!\alpha _i A_i q_l\!-\!\alpha _i B_i \!-\!\upbeta _i q_l^2 \!+\!\sum _{j=1}^N {(\upmu _j \!-\!\alpha _j \!-\!w_i s\!+\!B_j )} A_i q_l\!+\!\sum _{j=1}^N {A_j A_i q_l^2 } \\&\quad +B_i \left[\sum _{j=1}^N {(\upmu _j -\alpha _j -w_i s+B_j )} \right]+B_i \sum _{j=1}^N {A_j q_l}. \end{aligned}$$

For the above two equations to hold, we have that

$$\begin{aligned}&A_i^2 -\left(r-2\sum _{\begin{array}{l} j=1, \\ j\ne i \\ \end{array}}^N {A_j }\right) A_i -2\upbeta _i =0, \\ rB_i&= \sum _{j=1}^N {(\upmu _j -\alpha _j -w_i s)} A_i +\sum _{\begin{array}{l} j=1, \\ j\ne i \\ \end{array}}^N {B_j } A_i +B_i \sum _{j=1}^N {A_j } \\ rC_i&= 1/2(\upmu _i -\alpha _i +B_i )^{2}+\alpha _i w_i s+B_i \left[\sum _{\begin{array}{l} j=1, \\ j\ne i \\ \end{array}}^N {(\upmu _j -\alpha _j -w_i s+B_j )} \right]. \end{aligned}$$

This completes the proof of Proposition 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, ZM., Zhou, XW., Ding, Y. et al. A Cooperative Differential Game Model for Multiuser Rate-Based Flow Control. Wireless Pers Commun 72, 1173–1186 (2013). https://doi.org/10.1007/s11277-013-1072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1072-5

Keywords

Navigation