Skip to main content

Advertisement

In-Network Computations of Machine-to-Machine Communications for Wireless Robotics

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless robotics enables wide applications of service robots to benefit human life. However, effective machine-to-machine communications would be the foundation of operation. With cloud-based architecture, we innovatively demonstrate in-network computation to significantly alleviate the requirement of communication bandwidth for multi-hop networking, to achieve spectrum-efficient M2M communications. We further characterize the coverage geographical of machines to impact effective operation of wireless robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Birk, A., Schwertfeger, S., & Pathak, K. (2009). A networking framework for teleoperation in safety, security, and rescue robotics. IEEE Wireless Communications, 16(1), 6–13.

    Article  Google Scholar 

  2. Pohjola, M., Nethi, S., & Janti, R. (2009). Wireless control of a multihop mobile robot squad. IEEE Wireless Communications, 16(1), 14–20.

    Article  Google Scholar 

  3. Mezei, I., Malbasa, V., & Stojmenovic, I. (2010). Robot to robot. IEEE Robotics Automation Magazine, 17(4), 63–69.

    Article  Google Scholar 

  4. Hu, G., Tay, W. P., & Wen, Y. (2012). Cloud robotics: Architecture, challenges and applications. IEEE Network, 26(3), 21–28.

    Article  Google Scholar 

  5. Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. (2011). M2M: From mobile to embedded internet. IEEE Communications Magazine, 49(4), 36–43.

    Article  Google Scholar 

  6. Lee, E. A. (May 2008). Cyber physical systems: Design challenges. In 11th IEEE international symposium on object oriented real-time distributed computing (ISORC) (pp. 363–369).

  7. Lien, S.-Y., & Chen, K.-C. (2011). Massive access management for QoS guarantees in 3g pp machine-to-machine communications. IEEE Communications Letters, 15(3), 311–313.

    Article  Google Scholar 

  8. Cheng, S.-M., Lien, S.-Y., Chu, F.-S., & Chen, K.-C. (2011). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communications, 18(3), 40–47.

    Article  Google Scholar 

  9. Lien, S.-Y., Cheng, S.-M., Shih, S.-Y., & Chen, K.-C. (2012). Radio resource management for QoS guarantees in cyber-physical systems. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1752–1761.

    Article  Google Scholar 

  10. Chen, K.-C. (1994). Medium access control of wireless lans for mobile computing. IEEE Network, 8(5), 50–63.

    Article  Google Scholar 

  11. Chen, K.-C., & Prasad, R. (2009). Cognitive Radio Networks. New York: Wiley.

  12. Liang, Y.-C., Chen, K.-C., Li, G., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  13. Chen, K.-C. (June 2012). Machine-to-machine communications for healthcare. Journal of Computing Science and Engineering, 6(2), 119–126.

  14. Luo, R. C., Su, K., Shen, S., & Tsai, K. (2003). Networked intelligent robots through the internet: Issues and opportunities. Proceedings of the IEEE, 91(3), 371–382.

    Article  Google Scholar 

  15. Perkins, C. E. (2008). Ad hoc networking. New York: Wiley.

  16. Watts, D. J., & Strogatz, S. H. (June 1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

    Google Scholar 

  17. Lin, S.-C., Gu, L., & Chen, K.-C. (2012). Providing statistical QoS guarantees in large cognitive machine-to-machine networks. In IEEE GLOBECOM (Machine-to-Machine, Communications Workshop).

  18. Freris, N. M., Kowshik, H., & Kuma, P. (2010). Fundamentals of large sensor networks: Connectivity, capacity, clocks, and computation. Proceedings of the IEEE, 98(11), 1828–1846.

    Article  Google Scholar 

  19. Gong, X., Chandrashekhar, T., Zhang, J., & Poor, H. (2012). Opportunistic cooperative networking: To relay or not to relay? IEEE Journal on Selected Areas in Communications, 30(2), 307–314.

    Article  Google Scholar 

  20. Haenggi, M., Andrews, J., Baccelli, F., Dousse, O., & Franceschetti, M. (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1029–1046.

    Article  Google Scholar 

  21. Ao, W. C., Cheng, S.-M., & Chen, K.-C. (2012). Connectivity of multiple cooperative cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 263–270.

    Article  Google Scholar 

  22. Chen, P.-Y., Ao, W. C., & Chen, K.-C. (2012). Rate-delay enhanced multipath transmission scheme via network coding in multihop networks. IEEE Communications Letters, 16(3), 281–283.

    Article  MathSciNet  Google Scholar 

  23. Ao, W. C., & Chen, K.-C. (2012). Cognitive radio-enabled network-based cooperation: From a connectivity perspective. IEEE Journal on Selected Areas in Communications, 30(10), 1969–1982.

    Article  Google Scholar 

  24. Ao, W. C., & Chen, K.-C. (2013). Error control for local broadcasting in heterogeneous wireless ad hoc networks. IEEE Transactions on Communications (to appear).

  25. Fink, J., Ribeiro, A., & Kumar, V. (2012). Robust control for mobility and wireless communication in cyber; physical systems with application to robot teams. Proceedings of the IEEE, 100(1), 164–178.

    Article  Google Scholar 

  26. Huang, C.-H., & Chen, K.-C. (April 2009). Decision-prediction sensor fusion for intelligent mobile device navigation. In IEEE 69th vehicular technology conference, 2009. VTC Spring (pp. 1–5).

  27. Bai, F., Munasinghe, K., & Jamalipour, A. (2012). A novel information acquisition technique for mobile-assisted wireless sensor networks. IEEE Transactions on Vehicular Technology, 61(4), 1752–1761.

    Article  Google Scholar 

  28. Shi, Y., & Hou, Y. T. (2012). Some fundamental results on base station movement problem for wireless sensor networks. IEEE/ACM Transactions on Networking, 20(4), 1054–1067.

    Article  Google Scholar 

  29. Giridhar, A., & Kumar, P. (2005). Computing and communicating functions over sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 755–764.

    Article  Google Scholar 

  30. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.

    Article  Google Scholar 

  31. Yuan, J., & Yu, W. (2008). Joint source coding, routing and power allocation in wireless sensor networks. IEEE Transactions on Communications, 56(6), 886–896.

    Article  Google Scholar 

  32. Slepian, D., & Wolf, J. (1973). Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(4), 471–480.

    Article  MathSciNet  MATH  Google Scholar 

  33. Berger, T., Zhang, Z., & Viswanathan, H. (1996). The ceo problem [multiterminal source coding]. IEEE Transactions on Information Theory, 42(3), 887–902.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ramamoorthy, A. (2011). Minimum cost distributed source coding over a network. IEEE Transactions on Information Theory, 57(1), 461–475.

    Article  MathSciNet  Google Scholar 

  35. Conti, J. (2006). The internet of things. IEEE Communications Engineer, 4(6), 20–25.

    Article  Google Scholar 

  36. Barros, J., & Servetto, S. (2006). Network information flow with correlated sources. IEEE Transactions on Information Theory, 52(1), 155–170.

    Article  MathSciNet  Google Scholar 

  37. Gemana, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721–741.

    Google Scholar 

  38. Manohar, P., & Manjunath, D. (2009). On the coverage process of a moving point target in a non-uniform dynamic sensor field. IEEE Journal on Selected Areas in Communications, 27(7), 1245–1255.

    Article  Google Scholar 

  39. Li, M., Cheng, W., Liu, K., He, Y., Li, X., & Liao, X. (2011). Sweep coverage with mobile sensors. IEEE Transactions on Mobile Computing, 10(11), 1534–1545.

    Article  Google Scholar 

  40. Hefeeda, M., & Bagheri, M., (October 2007). Wireless sensor networks for early detection of forest fires. In IEEE internatonal conference on mobile ad hoc and sensor systems, 2007, MASS 2007 (pp. 1–6).

  41. Liu, B., & Towsley, D. (October 2004). A study of the coverage of large-scale sensor networks. In 2004 IEEE international conference on mobile ad-hoc and sensor systems (pp. 475–483).

  42. Megerian, S., Koushanfar, F., Potkonjak, M., & Srivastava, M. (2005). Worst and best-case coverage in sensor networks. IEEE Transactions on Mobile Computing, 4(1), 84–92.

    Article  Google Scholar 

  43. Meester, R., & Roy, R. (1996). Continuum percolation. Cambridge: Cambridge University Press.

  44. Stoyan, D., Kendall, W. S., & Mecke, J. (1987). Stochastic geometry. New York: Wiley.

  45. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In Proceedings IEEE INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies (vol. 3 pp. 1567–1576).

  46. Manjeshwar, A., & Agrawal, D. (April 2001). Teen: A routing protocol for enhanced efficiency in wireless sensor networks. In Proceedings 15th international parallel and distributed processing, symposium (pp. 2009–2015).

  47. Saad, W., Han, Z., Debbah, M., Hjorungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 26(5), 77–97.

    Article  Google Scholar 

  48. Scarf, H. E. (1967). The core of an n person game. Econometrica, 35(1), 50–69 (Online). http://www.jstor.org/stable/1909383.

    Google Scholar 

  49. Shapley, L. (1971). Cores of convex games. International. Journal of Game Theory, 1, 11–26.

    Google Scholar 

  50. Littlechild, S. C., & Owen, G. (1973). A simple expression for the shapley value in a special case. Management Science, 20(3), 370–372.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Cheng Chen.

Additional information

This research is supported by the INTEL Corp. and National Science Council under the contract NSC-101-2911-I-002-001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, FM., Lin, CH. & Chen, KC. In-Network Computations of Machine-to-Machine Communications for Wireless Robotics. Wireless Pers Commun 70, 1097–1119 (2013). https://doi.org/10.1007/s11277-013-1119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1119-7

Keywords