Skip to main content
Log in

A Semi-Orthogonal Distributed Alamouti Space-Time Codes Design

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel semi-orthogonal distributed Alamouti space-time codes transmission protocol is proposed for a four nodes cooperative communication system consisting of one source, one destination and two semi blind relays over block fading channels. In particular, by semi-orthogonal we mean two orthogonal frequency bands are invoked, one of which is for the transmission by the source node, while the other one is shared simultaneously by the two relay-destination links. Moreover, analytical performances of the proposed semi-orthogonal scheme are investigated in this paper. Specifically, the theoretical expressions of the exact SER and diversity order are presented. Our proposed scheme is capable of achieving higher spectral efficiency and remaining the same diversity order compared to the existing orthogonal one, while attaining better symbol error rate performance and higher diversity order against the non-orthogonal design. Finally, simulation results prove the correctness of the above conclusions and also verify our derivation for the analytical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SER:

Symbol error rate

STBC:

Space time block codes

V-BLAST:

Vertical-Bell Labs Layered Space-Time

OSTBC:

Orthogonal space time block codes

STC:

Space time codes

SNR:

Signal to noise ratio

CSI:

Channel state information

LTE-A:

Long Term Evolution-Advanced

CSCG:

Circularly symmetric complex Gaussian

eNodeB:

Evolved Node B

AWGN:

Additive white Gaussian noise

MRC:

Maximum ratio combine

MGF:

Moment generation function

LOS:

Line-of-sight

References

  1. Telatar, I. E. (1999). Capacity of multiantenna Guassian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  2. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In IEEE international symposium on signals, systems, and, electronics (pp. 295–300).

  3. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Select Areas Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  4. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  5. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  6. Anghel, P. A., & Kaveh, M. (2004). Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Transactions on Wireless Communications, 3(5), 1416–1421.

    Article  Google Scholar 

  7. Ribeiro, A., Xiaodong, C., & Giannakis, G. B. (2005). Symbol error probabilities for general cooperative links. IEEE Transactions on Wireless Communications, 4(3), 1264–1273.

    Article  Google Scholar 

  8. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MathSciNet  Google Scholar 

  9. Alapattu, S., Rajatheva, N., & Tellambura, C. (2010). Performance analysis of TDMA relay protocols over Nakagami-fading. IEEE Transactions on Vehicular Technology, 59(1), 93–104.

    Article  Google Scholar 

  10. Ju, M., Song, H. K., & Kim, I. M. (2009). Exact BER analysis of distributed Alamouti’s code for cooperative diversity networks. IEEE Transactions on Communications, 57(8), 2380–2390.

    Article  Google Scholar 

  11. Xia, M., Xing, C., Chung, Y., & Aissa, S. (2011). Exact performance analysis of dual-hop semi-blind AF relaying over arbitrary nakagami-fading channels. IEEE Transactions on Wireless Communications, 10(10), 3449–3459.

    Article  Google Scholar 

  12. Yi, Z., Ju, M., Song, H. K., & Kim, I.-M. (2011). BER and diversity order analysis of distributed Alamouti’s code with CSI-assisted relays. IEEE Transactions on Wireless Communications, 10(4), 17–20.

    Article  Google Scholar 

  13. Shin, H., Duong, T. Q., & Hong, E. K. (2009). MIMO cooperative diversity with scalar-gain amplify-and-forward relaying. IEEE Transactions on Communications, 57(7), 1932–1938.

    Article  Google Scholar 

  14. Hasna, M. O., & Alouini, M.-S. (2004). A performance study of dual-hop transmissions with fixed gain relays. IEEE Transactions on Wireless Communications, 3(4), 1963–1968.

    Article  Google Scholar 

  15. Zummo, S. A., & Stark, W. E. (2006). Error probability of coded STBC systems in block fading environments. IEEE Transactions on Wireless Communications, 5(5), 972–977.

    Article  Google Scholar 

  16. 3GPP (2012). Overview of 3GPP release 10. Description document. 3GPP. http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases. Accessed 27 June 2012.

  17. Zummo, S. A. (2003). Coding and channel estimation for block-fading channels. Technical report. Communications and Signal Processing Laboratory (CSPL): University of Michigan. http://www.eecs.umich.edu/systems/TechReportList.html.

  18. Vucetic, B., & Yuan, J. (2003). Space-time coding. West Sussex: Wiley.

    Book  Google Scholar 

  19. Yi, Z., & Kim, I.-M. (2009). Approximate BER expressions of distributed Alamouti’s code in dissimilar cooperative networks with blind relays. IEEE Transactions on Communications, 57(12), 3571–3578.

    Article  Google Scholar 

  20. Anghel, P. A., & Kaveh, M. (2006). On the performance of distributed space-time coding systems with one and two non-generative relays. IEEE Transactions on Wireless Communications, 5(3), 682–692.

    Article  Google Scholar 

  21. Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels. New York: Wiley.

    Book  Google Scholar 

  22. Yang, L. L., & Chen, H.-H. (2008). Error probability of digital communications using relay diversity over Nakagami-fading channels. IEEE Transactions on Wireless Communications, 7(5), 1806–1811.

    Article  Google Scholar 

  23. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products. Oxford: Elsevier.

    MATH  Google Scholar 

  24. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  25. Rappaport, T. S. (2002). Wireless communications: Principles and practice. London: Prentice Hall.

    Google Scholar 

  26. Duong, T.Q., Ha, D. B., Tran, H. A., & Vo, N. S. (2008). Symbol error probability of distributed-Alamouti scheme in wireless relay networks. In IEEE conference on vehicular technology (pp. 648–652).

  27. Benedetto, S., & Biglieri, E. (1999). Principles of digital transmission with wireless applications. New York: Springer.

    MATH  Google Scholar 

Download references

Acknowledgments

The financial support of the Major Program of National Natural Science Foundation of China (61231008), of the National Natural Science Foundation of China (61201137), of National Basic Research Program of China (973 Program) (2009CB320404), of the Fundamental Research Funds for the Central Universities (K5051201015), of ISN1003002, as well as of the Innovation Fund for returned overseas Scholars of Xidian University (64101879), of the China 111 Project (B08038) and of the Fundamental Research Funds for the Central Universities (K5051201001) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ya Li.

Appendices

Appendix 1

1.1 The Derivation of MGF \(M_\gamma (t)\)

First, for flat Rayleigh fading channels, the channel gain \(\left| {h_{xy} } \right| ^{2}\) of the link \(\text{ X }\rightarrow \text{ Y } (\text{ X }\in \{\text{ S, } \text{ R }_{1} ,\text{ R }_{2} \},\, \text{ Y }\in \{\text{ R }_{1} ,\text{ R }_{2} , \text{ D }\})\) is exponential distribution [24], and the probability density function (PDF) of \(\left| {h_{xy} } \right| ^{2}\) can be expressed as

$$\begin{aligned} f_{\left| {h_{xy} } \right| ^{2}} \left( \left| {h_{xy} } \right| ^{2}\right) =\frac{1}{\Omega _{xy} }\exp \left( -\left| {h_{xy} } \right| ^{2}/\Omega _{xy} \right) . \end{aligned}$$
(26)

Based on (26), the MGF \(M_\gamma \left( t|\left| {h_{r_i d} } \right| ^{2}\right) \) of \(\gamma \) conditioned on \(\left| {h_{r_i d} } \right| ^{2}\) can be written as

$$\begin{aligned}&M_\gamma (t|\left| {h_{r_i d} } \right| ^{2}) \nonumber \\&\quad =\int \limits _0^\infty {\exp }(\gamma t)f(\gamma )d_\gamma \nonumber \\&\quad =\int \limits _0^\infty {e^{t\left( \gamma _0 \left| {h_{sd1} } \right| ^{2}+\gamma _0 \left| {h_{sd2} } \right| ^{2}\right) }f_{\left| {h_{sd} } \right| ^{2}} } \left( \left| {h_{sd} } \right| ^{2}\right) d_{\left| {h_{sd} } \right| ^{2}}\nonumber \\&\quad \quad \times \int \limits _0^\infty {\int \limits _0^\infty {e^{t\gamma _0 \frac{\beta _{1}^{2} \left| {h_{sr_1 } } \right| ^{2}\left| {h_{r_1 d} } \right| ^{2}+\beta _{2}^{2} \left| {h_{sr_2 } } \right| ^{2}\left| {h_{r_2 d} } \right| ^{2}}{\beta _{1}^{2} \left| {h_{r_1 d} } \right| ^{2}+\beta _{2}^{2} \left| {h_{r_2 d} } \right| ^{2}+1}}f_{\left| {h_{sr_i } } \right| ^{2}} \left( \left| {h_{sr_i } } \right| ^{2}\right) d_{\left| {h_{sr_i } } \right| ^{2}} } }\nonumber \\&\quad =\frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\prod _{i=1}^2 {\left( 1-\frac{t\left| {h_{r_i d} } \right| ^{2}\Omega _1 }{\left( \beta _1^2 \left| {h_{r_1 d} } \right| ^{2}+\beta _2^2 \left| {h_{r_2 d} } \right| ^{2}\right) /\beta _i^2 \gamma _0 +1/\beta _i^2 \gamma _0 }\right) ^{-1}}. \end{aligned}$$
(27)

Based on (27), we can obtain \(M_\gamma (t)\) by averaging \(M_\gamma (t|\left| {h_{r_i d} } \right| ^{2})\) on \(\left| {h_{r_i d} } \right| ^{2}\), which can be expressed as [10]

$$\begin{aligned} M_\gamma (t)&= \frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\int \limits _0^\infty {\int \limits _0^\infty {\prod _{i=1}^2 \left( 1-\frac{t\left| {h_{r_i d} } \right| ^{2}\Omega _1 }{\frac{\beta _1^2 \left| {h_{r_1 d} } \right| ^{2}+\beta _2^2 \left| {h_{r_2 d} } \right| ^{2}\text{+1 }}{\beta _i^2 \gamma _0 }}\right) }} ^{-1}\nonumber \\&\quad \times \frac{1}{\Omega _2^2 }e^{-\frac{\left| {h_{r_1 d} } \right| ^{2}+\left| {h_{r_2 d} } \right| ^{2}}{\Omega _2 }}d_{\left| {h_{r_1 d} } \right| ^{2}} d_{\left| {h_{r_2 d} } \right| ^{2}} \end{aligned}$$
(28)

Since \(\beta _1^2 =\beta _2^2 =\beta ^{2}\), (28) can be simplified as:

$$\begin{aligned} M_\gamma (t)&= \frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\int \limits _0^\infty {\int \limits _0^\infty {\prod _{i=1}^2 {\left( 1-\frac{t\left| {h_{r_i d} } \right| ^{2}\Omega _1 }{\frac{\left| {h_{r_1 d} } \right| ^{2}+\left| {h_{r_2 d} } \right| ^{2}}{\gamma _0 }+\frac{1}{\beta ^{2}\gamma _0 }}\right) }}} ^{-1}\nonumber \\&\quad \times \frac{1}{\Omega _2^2 }e^{-\frac{\left| {h_{r_1 d} } \right| ^{2}+\left| {h_{r_2 d} } \right| ^{2}}{\Omega _2 }}d_{\left| {h_{r_1 d} } \right| ^{2}} d_{\left| {h_{r_2 d} } \right| ^{2}}. \end{aligned}$$
(29)

Let \(\tau =\left| {h_{r_1 d} } \right| ^{2}+\left| {h_{r_2 d} } \right| ^{2}\), (29) can be written as [10]

$$\begin{aligned} M_\gamma (t)&= \frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\int \limits _0^\infty {\int \limits _0^\infty {\prod _{i=1}^2 {\left( 1-\frac{t\Omega _1 \left| {h_{r_i d} } \right| ^{2}}{\frac{\tau }{\gamma _0 }+\frac{1}{\beta ^{2}\gamma _0 }}\right) ^{-1}} } } \frac{1}{\Omega _2^2 }e^{-\frac{\tau }{\Omega _2 }}d_{\left| {h_{r_1 d} } \right| ^{2}} d_{\left| {h_{r_2 d} } \right| ^{2}} \nonumber \\&= \frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\int \limits _0^\infty {H(\tau )} \frac{1}{\Omega _2^2 }e^{-\frac{\tau }{\Omega _2 }}d_\tau , \end{aligned}$$
(30)

where \(H(\tau )=\int _0^\tau {\frac{1}{1-\alpha _1 \left| {h_{r_1 d} } \right| ^{2}}\frac{1}{1-\alpha _1 (\tau -\left| {h_{r_1 d} } \right| ^{2})}} d_{\left| {h_{r_1 d} } \right| ^{2}} ,\alpha _1 =\frac{t\Omega _1 }{\tau /\gamma _0 +1/\beta ^{2}\gamma _0 }\).

Using the method of partial fraction expansion, \(H(\tau )\) can be expressed as [10]

$$\begin{aligned} H(\tau )&= \frac{1}{2-\alpha _1 \tau }\int \limits _0^\tau {\left( \frac{1}{1-\alpha _1 \left| {h_{r_1 d} } \right| ^{2}}+\frac{1}{1-\alpha _1 \left( \tau -\left| {h_{r_1 d} } \right| ^{2}\right) }\right) } d_{\left| {h_{r_1 d} } \right| ^{2}}\nonumber \\&= \frac{-2\ln (1-\alpha _1 \tau )}{\alpha _1 (2-\alpha _1 \tau )}. \end{aligned}$$
(31)

Finally, the MGF \(M_\gamma (t)\) of \(\gamma \) can be written as

$$\begin{aligned} M_{\gamma _q } (t)=\frac{1}{\left( {1-t\Omega _0 \gamma _0 } \right) ^{2}}\int \limits _0^\infty {\frac{-2\ln (1-\alpha _1 \tau )}{\alpha _1 (2-\alpha _1 \tau )}} \frac{1}{\Omega _2^2 }e^{-\frac{\tau }{\Omega _2 }}d_\tau . \end{aligned}$$
(32)

Appendix 2

1.1 Proof of Theorem 1

First, based on Eq. (3.352.4) in [23], we have the following equation:

$$\begin{aligned} -e^{\mu (t)\theta }\text{ Ei }(-\mu (t)\theta )=\int \limits _0^\infty {\frac{1}{t+\theta }} e^{-\mu (t)t}dt. \end{aligned}$$
(33)

where \(\text{ Ei }(\,)\) is the exponential integral function [23].

Let \(t=\hat{{t}}\theta \), (33) can be rewritten as

$$\begin{aligned} -e^{\mu (t)\theta }\text{ Ei }(-\mu (t)\theta )&= \int \limits _0^\infty {\frac{1}{t+\theta }} e^{-\mu (t)t}dt \nonumber \\&= \int \limits _0^\infty {\frac{1}{\theta }\frac{1}{1+\hat{{t}}}} e^{-\mu (\hat{{t}}\theta )\hat{{t}}\theta }d\left( {\hat{{t}}\theta } \right) \nonumber \\&= \int \limits _0^\infty {\frac{1}{1+\hat{{t}}}} e^{-\mu (\hat{{t}}\theta )\hat{{t}}\theta }d\hat{{t}}. \end{aligned}$$
(34)

Then let \(\hat{{t}}=t\), (34) can be further expressed as

$$\begin{aligned} -e^{\mu (t)\theta }\text{ Ei }(-\mu (t)\theta )=\int \limits _0^\infty {\frac{1}{1+t}} e^{-\mu (t\theta )t\theta }dt. \end{aligned}$$
(35)

On the other hand, from Eq. (9.211.4) in [23], the confluent hypergeometric function \(\Psi (\alpha ,r;z)\)can be expressed as

$$\begin{aligned} \Psi (\alpha ,r;z)=\frac{1}{\Gamma (\alpha )}\int \limits _0^\infty {e^{-zt}t^{\alpha -1}(1+t)^{r-\alpha -1}dt} , \end{aligned}$$
(36)

where \(\Gamma (\alpha )=\int _0^\infty {e^{-t}t^{\alpha -1}} d_t \) is the gamma function [23].

Let \(\alpha =1, r=1\) and \(z=\mu (t)\theta \), based on (36), we can obtain

$$\begin{aligned} \Psi (1,1;\mu (t)\theta )&= \frac{1}{\Gamma (1)}\int \limits _0^\infty {e^{-\mu (t)\theta t}(1+t)^{-1}dt} \nonumber \\&= \int \limits _0^\infty {e^{-t}} d_t \int \limits _0^\infty {e^{-\mu (t)\theta t}(1+t)^{-1}dt} \nonumber \\&= \int \limits _0^\infty {\frac{1}{1+t}e^{-\mu (t)t\theta }dt} \end{aligned}$$
(37)

From (35) and (37), we can conclude that \(-e^{\mu (t)\theta }\text{ Ei }(-\mu (t)\theta )=\Psi (1,1;\mu (t)\theta )\).

Appendix 3

1.1 The Derivation of the MGF \(M_{\gamma _{a1} } (t)\) and \(M_{\gamma _{a2} } (t)\)

According to the Lemma 1 in [19], we can obtain the following expression as

$$\begin{aligned} M_{\gamma _{a1} } (t)&= \frac{1}{\left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) ^{2}\left( \beta _1^2 \Omega _{r_1 d} -\beta _2^2 \Omega _{r_2 d} \right) }\left[ \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) \left( \beta _1^2 \Omega _{r_1 d} -\beta _2^2 \Omega _{r_2 d} \right) \right. \nonumber \\&\quad \left. -t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }e^{\frac{1}{\beta _1^2 \Omega _{r_1 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }}\text{ Ei }\left( \frac{1}{\beta _1^2 \Omega _{r_1 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }\right) \nonumber \right. \\&\quad \left. +t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }e^{\frac{1}{\beta _2^2 \Omega _{r_2 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }}\text{ Ei }\left( \frac{1}{\beta _2^2 \Omega _{r_2 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }\right) \right] ,\end{aligned}$$
(38)
$$\begin{aligned} M_{\gamma _{a2} } (t)&= \frac{\Omega _{sr_1 } }{\left( {\Omega _{sr_1 } +\Omega _{sr_2 } } \right) ^{2}}\left[ \Omega _{sr_1 }^2 t\gamma _0 M\left( \frac{\beta _2^2 \Omega _{r_2 d} }{\beta _1^2 \Omega _{r_1 d} },-\Omega _{sr_1 } t\gamma _0 ,\frac{1}{\beta _1^2 \Omega _{r_1 d} }\right) +\Omega _{sr_1 } \right. \nonumber \\&\quad \left. +\Omega _{sr_2 } +\Omega _{sr_2 }^2 t\gamma _0 M\left( \frac{\beta _2^2 \Omega _{r_2 d} }{\beta _1^2 \Omega _{r_1 d} },-\Omega _{sr_2 } t\gamma _0 ,\frac{1}{\beta _1^2 \Omega _{r_1 d} }\right) \right] \nonumber \\&\quad +\frac{\Omega _{sr_2 } }{\left( {\Omega _{sr_1 } +\Omega _{sr_2 } } \right) ^{2}}\left[ \Omega _{sr_1 } +\Omega _{sr_2 } +\Omega _{sr_1 }^2 t\gamma _0 M\left( \frac{\beta _1^2 \Omega _{r_1 d} }{\beta _2^2 \Omega _{r_2 d} },-\Omega _{sr_1 } t\gamma _0 ,\frac{1}{\beta _2^2 \Omega _{r_2 d} }\right) \right. \nonumber \\&\quad \left. +\Omega _{sr_2 }^2 t\gamma _0 M\left( \frac{\beta _1^2 \Omega _{r_1 d} }{\beta _1^2 \Omega _{r_2 d} },-\Omega _{sr_2 } t\gamma _0 ,\frac{1}{\beta _2^2 \Omega _{r_2 d} }\right) \right] , \end{aligned}$$
(39)

where \(M(x,y,z)\) is a function given in [19].

By using Theorem 1, (39) can be rewritten as:

$$\begin{aligned} M_{\gamma _{a1} } (t)&= \frac{1}{1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }}+\frac{t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }}{\left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) ^{2}\left( \beta _1^2 \Omega _{r_1 d} -\beta _2^2 \Omega _{r_2 d} \right) } \nonumber \\&\quad \times \left[ e^{\frac{2}{\beta _1^2 \Omega _{r_1 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }}\Psi (1,1;u_1 (t))\right. \nonumber \\&\quad \quad \left. +e^{\frac{2}{\beta _2^2 \Omega _{r_2 d} \left( 1-t\gamma _0 \frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }}\Psi (1,1;u_2 (t))\right] , \end{aligned}$$
(40)

where \(u_1 (t)=\frac{-1}{\beta _1^2 \left( 1-t\gamma _0 \frac{1}{\Omega _{r_2 d} }\frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }\frac{1}{\Omega _{r_1 d} }\) and \(u_2 (t)=\frac{-1}{\beta _2^2 \left( 1-t\gamma _0 \frac{1}{\Omega _{r_2 d} }\frac{\Omega _{sr_1 } \Omega _{sr_2 } }{\Omega _{sr_2 } +\Omega _{sr_2 } }\right) }\frac{1}{\Omega _{r_2 d} }\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XY., Liu, W., Li, JD. et al. A Semi-Orthogonal Distributed Alamouti Space-Time Codes Design. Wireless Pers Commun 72, 2803–2821 (2013). https://doi.org/10.1007/s11277-013-1181-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1181-1

Keywords

Navigation