Skip to main content
Log in

CogNS: A Simulation Framework for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio technology has been used to efficiently utilize the spectrum in wireless networks. Although many research studies have been done recently in the area of cognitive radio networks (CRNs), little effort has been made to propose a simulation framework for CRNs. In this paper, a simulation framework based on NS2 (CogNS) for cognitive radio networks is proposed. This framework can be used to investigate and evaluate the impact of lower layers, i.e., MAC and physical layer, on the transport and network layers protocols. Due to the importance of packet drop probability, end-to-end delay and throughput as QoS requirements in real-time reliable applications, these metrics are evaluated over CRNs through CogNS framework. Our simulations demonstrate that the design of new network and transport layer protocols over CRNs should be considered based on CR-related parameters such as activity model of primary users, sensing time and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  2. Mitola, J., I., & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. Personal Communications, IEEE, 6(4), 13–18.

  3. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  4. Marinho, J., & Monteiro, E. (2011). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.

    Article  Google Scholar 

  5. Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  6. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.

    Google Scholar 

  7. Cormio, C., & Chowdhury, K. R. (2009). A survey on MAC protocols for cognitive radio networks. Ad Hoc Networks, 7(7), 1315–1329.

    Article  Google Scholar 

  8. Cesana, M., Cuomo, F., & Ekici, E. (2011). Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks, 9(3), 228–248.

    Article  Google Scholar 

  9. Issariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isnt good. IEEE Communications Magazine, 47(7), 57–63.

    Article  Google Scholar 

  10. Calvo, R. A., & Campo, J. P. (2007). Adding multiple interface support in NS-2. Cantabria: University of Cantabria.

    Google Scholar 

  11. Wang, B. NS2 Notebook: Multi-channel Multi-interface Simulation in NS2 (2.29). http://www.cse.msu.edu/wangbo1/ns2/nshowto8.html.

  12. Chiueh, T. C., Raniwala, A., Krishnan, R., & Gopalan, K. Hyacinth: An IEEE 802.11-based multi-channel wireless mesh network. http://www.ecsl.cs.sunysb.edu/multichannel/.

  13. Cognitive radio cognitive network simulator. http://stuweb.ee.mtu.edu/ljialian/.

  14. Di Felice, M., Chowdhury, K. R., Kim, W., Kassler, A., & Bononi, L. (2011). End-to-end protocols for cognitive radio ad hoc networks: An evaluation study. Performance Evaluation, 68(9), 859–875.

    Article  Google Scholar 

  15. Network simulator version 2. http://www.isi.edu/nsnam/ns/.

  16. Slingerland, A. M. R., Pawelczak, P., Prasad, R. V., Lo, A., & Hekmat, R. (2007). Performance of transport control protocol over dynamic spectrum access links. In New frontiers in dynamic spectrum access networks, 2007. DySPAN 2007. 2nd IEEE international symposium on, 2007 (pp. 486–495).

  17. Kondareddy, Y. R., & Agrawal, P. (2009). Effect of dynamic spectrum access on transport control protocol performance. In Global telecommunications conference, 2009 (GLOBECOM 2009). IEEE, 2009, (pp. 1–6).

  18. Chowdhury, K. R., Di Felice, M., & Akyildiz, I. F. (2009). TP-CRAHN: A transport protocol for cognitive radio ad-hoc networks. In INFOCOM 2009, IEEE, 2009 (pp. 2482–2490).

  19. Sarkar, D., & Narayan, H. (2010). Transport layer protocols for cognitive networks. In INFOCOM IEEE conference on computer communications workshops, 2010 (pp. 1–6).

  20. Bicen, A. O., & Akan, O. B. (2011). Reliability and congestion control in cognitive radio sensor networks. Ad Hoc Networks, 9(7), 1154–1164.

    Article  Google Scholar 

  21. Lee, W.-Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  22. Bolch, G., Greiner, S., de Meer, H., Trivedi, K. S., & Trivedi, K. S. (1998). Queueing networks and Markov Chains: Modeling and performance evaluation with computer science applications. New York: Wiley.

    Book  MATH  Google Scholar 

  23. Tang, S., & Mark, B. L. (2009). Modeling and analysis of opportunistic spectrum sharing with unreliable spectrum sensing. IEEE Transactions on Wireless Communications, 8(4), 1934–1943.

    Article  Google Scholar 

  24. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

We thank Iran Telecommunication Research Center (ITRC) for supporting this research (http://www.itrc.ac.ir).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Esmaeelzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaeelzadeh, V., Berangi, R., Sebt, S.M. et al. CogNS: A Simulation Framework for Cognitive Radio Networks. Wireless Pers Commun 72, 2849–2865 (2013). https://doi.org/10.1007/s11277-013-1184-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1184-y

Keywords

Navigation