Skip to main content
Log in

Reliable Key Management and Data Delivery Method in Multicast Over Wireless IPv6 Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multicast is an efficient way to reduce the required bandwidth of transmitting data simultaneously to a group of users in wireless IPv6 networks. Nevertheless, multicast suffers from two main drawbacks which can be looked from two perspectives, namely security and QoS. With regard to security, the main challenge is to provide security protection to multicast data, which can be achieved by using a secure key management process. Considering a highly dense environment where connection of users to the network is changing frequently due to join or leave operations, key updating approach may burden a network devices with a huge amount of complex encryption/decryption processes. From the QoS perspective, multicast transmission over WLAN offers a tradeoff between the transmission rate and the coverage. The transmission rate of multicast is confined by the user with the lowest data rate in the group which is called fixed base rate problem. To address the above mentioned problems, we propose and implement a lightweight key management and data delivery scheme for multicast over wireless IPv6 networks. The proposed solution is envisaged to reduce the complexity of key updating, while at the same time is able to address the fixed base rate problem. The performance evaluation (by means of analytical and test-bed implementation) of the proposed key management method indicates its efficiency in reducing communication, computation, and storage costs, while maintaining both forward and backward securities. Moreover, the proposed data delivery method is able to improve the throughput and QoS, with low packet loss and transmission delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wittmann, R., & Zitterbart, M. (2000). Multicast communication: Protocols and applications. Los Altos: Morgan Kaufmann Pub.

    Google Scholar 

  2. Hardjono, T., & Dondeti, L. R. (2003). Multicast and group security. Artech House Publishers.

  3. Mehdizadeh, A., Khatun, S., & Borhanuddin, M. A. (2009). Distinctive key management method to secure multicast IPv6 networks. In IEEE 9th Malaysia international conference on communications (MICC), pp. 301–304.

  4. Wong, C., Gouda, M., & Lam, S. (2000). Secure group communications using key graphs. IEEE/ACM Transactions on Networking, 8, 16–30.

    Article  Google Scholar 

  5. Lin, J.-C., Huang, K.-H., Lai, F., & Lee, H.-C. (2009). Secure and efficient group key management with shared key derivation. Computer Standards & Interfaces, 31, 192–208.

    Article  Google Scholar 

  6. Trappe, W., Jie, S., Poovendran, R., & Liu, K. J. R. (2003). Key management and distribution for secure multimedia multicast. IEEE Transactions on Multimedia, 5, 544–557.

    Article  Google Scholar 

  7. Harney, H., & Harder, E. (1999). Logical key hierarchy protocol. draft-harney-sparta-lkhp-sec-00. txt, IETF Internet Draft (work in progress).

  8. Sherman, A., & McGrew, D. (2003). Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on Software Engineering, pp. 444–458.

  9. Baugher, M., Canetti, R., Dondeti, L., & Lindholm, F. (2005). Multicast security (MSEC) group key management architecture. IETF, RFC 4046.

  10. Vijayakumar, P., Bose, S., & Kannan, A. (2012). Centralized key distribution protocol using the greatest common divisor method. Computers & Mathematics with Applications.

  11. Mehdizadeh, A., Hisham, F., Raja Abdullah, R. S. A., Ali, B. M., & Othman, M. (2011). Quality-improved and secure multicast delivery method in mobile IPv6 networks. In The 16th IEEE symposium on computers and communications (IEEE-ISCC).

  12. Mehdizadeh, A., Hashim, F., Abdullah, R. S. A. R., Ali, B. M., Othman, M., & Khatun, S. (2013). Multicast-unicast data delivery method in wireless IPv6 networks. Journal of Network and Systems Management, pp. 1–26.

  13. Villalon, J., Seok, Y., Turletti, T., Cuenca, P., & Orozco-Barbosa, L. (2006). ARSM: Auto rate selection multicast mechanism for multi-rate wireless LANs. Personal Wireless Communications, 4217, 239–250.

    Article  Google Scholar 

  14. Villalon, J., Cuenca, P., Orozco-Barbosa, L., Seok, Y., & Turletti, T. (2007). Cross-layer architecture for adaptive video multicast streaming over multirate wireless LANs. IEEE Journal on Selected Areas in Communications, 25, 699–711.

    Article  Google Scholar 

  15. Kar, K., & Tassiulas, L. (2006). Layered multicast rate control based on Lagrangian relaxation and dynamic programming. IEEE Journal on Selected Areas in Communications, 24, 1464–1474.

    Article  Google Scholar 

  16. Huai-Rong, S., Singh, H., & Chiu, N. (2006). MAC-enabling technologies for high-throughput wireless LAN. In 3rd IEEE consumer communications and networking conference (CCNC), pp. 173–177.

  17. Seok, Y., & Choi, Y. (2003). Efficient multicast supporting in multi-rate wireless local area networks. Information Networking, 2662, 273–283.

    Article  Google Scholar 

  18. Park, Y., Seok, Y., Choi, N., Choi, Y., & Bonnin, J. M. (2006). Rate-adaptive multimedia multicasting over IEEE 802.11 wireless LANs. In: 3rd IEEE consumer communications and networking conference (CCNC), pp. 178–182.

  19. Piamrat, K., Ksentini, A., Bonnin, J. M., & Viho, C. (2009). Q-DRAM: QoE-based dynamic rate adaptation mechanism for multicast in wireless networks. In IEEE global telecommunications conference (GLOBECOM), pp. 1–6.

  20. Jun, Z., Yu, Z., Fanyuan, M., Dawu, G., & Yingcai, B. (2006). An extension of secure group communication using key graph. Information Sciences, 176, 3060–3078.

    Article  MathSciNet  Google Scholar 

  21. Naranjo, J., Antequera, N., Casado, L., & Lopez-Ramos, J. (2011). A suite of algorithms for key distribution and authentication in centralized secure multicast environments. Journal of Computational and Applied Mathematics.

  22. Ragab Hassen, H., Bettahar, H., Bouadbdallah, A., & Challal, Y. (2012). An efficient key management scheme for content access control for linear hierarchies. Computer Networks.

  23. Je, D.-H., Lee, J.-S., & Seo, S.-W. (2010). Computation-and-storage-efficient key tree management protocol for secure multicast communications. Computer Communications, 33, 136–148.

    Article  Google Scholar 

  24. Srinivasan, R., Vaidehi, V., Rajaraman, R., Kanagaraj, S., Kalimuthu, R., & Dharmaraj, R. (2010). Secure group key management scheme for multicast networks. International Journal of Network Security, 11, 30–34.

    Google Scholar 

  25. Wallner, D., Harder, E., & Agee, R. (1999). Key management for multicast: Issues and architectures. IETF, RFC 2627.

  26. Gu-In, K., & Byers, J. W. (2004). Leveraging single rate schemes in multiple rate multicast congestion control design. IEEE Journal on Selected Areas in Communications, 22, 1975–1986.

    Article  Google Scholar 

  27. Du, Q., & Zhang, X. (2009). A cross-layer framework for multi-layer-video multicast with QoS requirements in multirate wireless networks. IEEE Communications Letters, 13, 658–660.

    Article  Google Scholar 

  28. Du, Q., & Zhang, X. (2010). Statistical QoS provisionings for wireless unicast/multicast of multi-layer video streams. IEEE Journal on Selected Areas in Communications, 28, 420–433.

    Article  Google Scholar 

  29. Bhattacharyya, S., Kurose, J. F., Towsley, D., & Nagarajan, R. (2003). Efficient rate-controlled bulk data transfer using multiple multicast groups. IEEE/ACM Transactions on Networking (TON), 11, 895–907.

    Article  Google Scholar 

  30. Yousefi’zadeh, H., Jafarkhani, H., & Habibi, A. (2005). Layered media multicast control (LMMC): Rate allocation and partitioning. IEEE/ACM Transactions on Networking, 13, 540–553.

    Article  Google Scholar 

  31. Kar, K., Sarkar, S., & Tassiulas, L. (2002). A scalable low-overhead rate control algorithm for multirate multicast sessions. IEEE Journal on Selected Areas in Communications, 20, 1541–1557.

    Article  Google Scholar 

  32. Alay, O., Korakis, T., Wang, Y., & Panwar, S. (2010). Dynamic rate and FEC adaptation for video multicast in multi-rate wireless networks. Mobile Networks and Applications, 15, 425–434.

    Article  Google Scholar 

  33. Ge, W., Zhang, J., & Shen, S. (2007). A cross-layer design approach to multicast in wireless networks. IEEE Transactions on Wireless Communications, 6, 1063–1071.

    Article  Google Scholar 

  34. Alay, O., Korakis, T., Wang, Y., Erkip, E., & Panwar, S. S. (2010). Layered wireless video multicast using relays. IEEE Transactions on Circuits and Systems for Video Technology, 20, 1095–1109.

    Article  Google Scholar 

  35. Lopez-Aguilera, E., Heusse, M., Grunenberger, Y., Rousseau, F., Duda, A., & Casademont, J. (2008). An asymmetric access point for solving the unfairness problem in WLANs. IEEE Transactions on Mobile Computing, 7, 1213–1227.

    Article  Google Scholar 

  36. Wang, J., Fang, Y., & Wu, D. (2007). Enhancing the performance of medium access control for WLANs with multi-beam access point. IEEE Transactions on Wireless Communications, 6, 556–565.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mehdizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdizadeh, A., Abdullah, R.S.A.R., Hashim, F. et al. Reliable Key Management and Data Delivery Method in Multicast Over Wireless IPv6 Networks. Wireless Pers Commun 73, 967–991 (2013). https://doi.org/10.1007/s11277-013-1226-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1226-5

Keywords

Navigation