Skip to main content
Log in

Channel and Time Slot Allocation for Dense RFID Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a constraint satisfaction approach to the reader collision problem in dense mode environments for static RFID networks. Our method assigns available channels and time slots to the RFID readers to increase the read rate while satisfying all the interference constraints. We model the problem with a hybrid frequency and time division multiplexing constraint satisfaction for reader anti-collision and assign workable channels and time slots to each reader using backtracking search algorithms. A depth-first-search based on backtracking was performed to find solutions to constraint satisfaction problems. Instead of performing an exhaustive search for the optimal result, we adopted good variable ordering heuristics as branching strategies where the search can be completed quickly. Thus, the search space is greatly reduced, and approximate solutions are found instantly. To find appropriate heuristics, we applied a problem classifying rule to determine the quality of the variable ordering heuristics. Computer simulations of the comparable performance of some variable ordering algorithms in the channel and time slot allocation for dense RFID networks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou, S., Luo, Z., Wong, E., Tan, C. J., & Luo, J. (2007). Interconnected RFID reader collision model and its application in reader anti-collision. In Proceeding of the 2007 IEEE international conference on RFID (pp. 212–219).

  2. Piramuthu, S. (2008). Anti-collision algorithm for RFID tags. In Proceeding of the mobile and, pervasive computing (pp. 116–118).

  3. Galiotto, C., Marchetti, N., Prasad, N., & Prasad, R. (2012). Low access delay anti-collision algorithm for readers in passive RFID systems. Wireless Personal Communications, 64(1), 169–183.

    Article  Google Scholar 

  4. Engels, D. W., & Sarma, S. E. (2002). The reader collision problem. In Proceedings of the 2002 IEEE international conference on systems, man and cybernetics (pp. 92–97).

  5. Sayeed, S. K., Kim, Y. S., Yang, H., & Yook, J. G. (2011). A solution to the RFID reader interference problem using adaptive beam-forming approach. IETE Technical Review, 28(1), 17–28.

    Article  Google Scholar 

  6. Bueno-Delgado, M. V., Vales-Alonso, J., Angerer, C., & Rupp, M. (2010). A comparative study of RFID schedulers in dense reader environments. In 2010 IEEE international conference on industrial technology (ICIT) (pp. 1373–1378).

  7. Seo, H., & Lee, C. (2010). A new GA-based resource allocation scheme for a reader-to-reader interference problem in RFID systems. In 2010 IEEE international conference on communications (ICC) (pp. 1–5).

  8. Song, I, Hong, S., & Chang, K. (2009). An improved reader anti-collision algorithm based on pulse protocol with slot occupied probability in dense reader mode. In Proceeding of the IEEE 69th vehicular technology conference (pp. 1–5).

  9. Yu, J., & Lee, W. (2008). GENTLE: Reducing reader collision in mobile RFID networks. In Proceeding of the 4th international conference on mobile ad-hoc and sensor, networks (pp. 280–287).

  10. Kang, H., Zhao, Y., & Mei, F. (2013). A graph coloring based TDMA scheduling algorithm for wireless sensor networks. Wireless Personal Communications.

  11. Hale, W. K. (1980). Frequency assignment: Theory and applications. Proceedings of the IEEE, 68, 1497–1514.

  12. Giortzis, A. I., & Turner, L. F. (1997). Application of mathematical programming to the fixed channel assignment problem in mobile radio networks. IEE Proceedings of Communication, 144, 257–264.

    Google Scholar 

  13. Carlsson, M., & Grindal, M. (1993). Automatic frequency assignment for cellular telephone using constraint satisfaction techniques. In Proceedings of the tenth international conference on logic programming (pp. 647–665).

  14. Walsher, J. P. (1996). Feasible cellular frequency assignment using constraint programming abstractions. In Proceedings of the workshop on constraint programming applications.

  15. Tian, J., Fan, Y., Zhu, Y., & Hu, K. (2008). RFID reader anti-collision using chaos neural network based on annealing strategy. In Proceeding of the world congress on, intelligent control and automation (pp. 6128–6132).

  16. Br’elaz, D. (1979). New methods to color the vertices of a graph. Communication of the ACM, 22(4), 251–256.

    Article  MathSciNet  Google Scholar 

  17. Achlioptas, D., & Naor, A. (2005). The two possible values of the chromatic number of a random graph. Annals of Mathematics, 162, 1335–1351.

    Article  MathSciNet  MATH  Google Scholar 

  18. Waldrop, J., Engels, D. W., & Sarma, S. E. (2003). Colorwave: An anticollision algorithm for the reader collision problem. In IEEE international conference on communications, 2003 (ICC ’03) (pp. 1206–1210).

  19. Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of constraint programming. Amsterdam: Elsevier.

    MATH  Google Scholar 

  20. Bollig, B., & Wegener, I. (1996). Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers, 45(9), 993–1002.

    Article  MATH  Google Scholar 

  21. Bacchus, F., & van Run, P. (1995). Dynamic variable ordering in CSPs, CP’95, volume 976 of, Lecture Notes in Computer Science (pp. 258–277).

  22. Gent, I. P., MacIntyre, E., Prosser, P., Smith, B. M., & Walsh, T. (1996). An empirical study of dynamic variable ordering heuristics for the constraint satisfaction problem. In Principles and practice of constraint programming (CP-96) (pp. 179–193).

  23. Smith, B. M., & Grant, S. A. (1998). Trying harder to fail first. In ECAI (pp. 249–253).

  24. Smith, B. M. (1999). The Br’elaz heuristic and optimal static orderings. In J. Jaffar (Ed.), CP, volume 1713 of, Lecture Notes in Computer Science (pp. 405–418).

  25. Singh, W., & Sengupta, J. (2013). An efficient algorithm for optimizing base station site selection to cover a convex square region in cell planning. Wireless Personal Communications.

  26. Sohn, S., & Jo, G. (2006). Optimization of base stations positioning in mobile networks. In ICCSA 2006, vol. 3981 of Lecture Notes in Computer Science (pp. 779–787).

  27. Masaeli, N., Haj, H., Javadi, S., & Noori. E. (2013). Optimistic selection of cluster heads based on facility location problem in cluster-based routing protocols. Wireless Personal Communications.

  28. Pan, J., Cai, L., Hou, Y. T., Shi, Y., & Shen, S. X. (2005). Optimal base-station locations in two-tiered wireless sensor networks. IEEE Transactions on Mobile Computing, 4(5), 458–473.

    Article  Google Scholar 

  29. Hnich, B., Walsh, T., & Smith, B. M. (2004). Dual modeling of permutation and injection problems. Journal of Artificial Intelligence Research, 21, 357–391.

    MathSciNet  MATH  Google Scholar 

  30. Golomb, S. W., & Baumert, L. D. (1965). Backtrack programming. Journal of the ACM, 12(4), 516–524.

    Article  MathSciNet  MATH  Google Scholar 

  31. Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3), 263–313.

    Article  Google Scholar 

  32. Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of ACM, 29(1), 24–32.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bessi‘ere, C., & R’egin, J.-C. (1996). MAC and combined heuristics: Two reasons to forsake FC (and CBJ?) on hard problems, Lecture Notes in Computer Science (Vol. 1118, pp. 61–75).

  34. Boussemart, F, Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by weighting constraints. In Proceeding of the ECAI (pp. 146–150).

  35. Sohn, S., & Jo, G. S. (2006). Solving a constraint satisfaction problem for frequency assignment in low power FM broadcasting, Lecture Notes in Artificial Intelligence (Vol. 4304, pp. 739–748).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surgwon Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, S., Jung, JJ. Channel and Time Slot Allocation for Dense RFID Networks. Wireless Pers Commun 73, 329–339 (2013). https://doi.org/10.1007/s11277-013-1241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1241-6

Keywords

Navigation