Skip to main content
Log in

Exact Outage Probability of a Decode-and-Forward Scheme with Best Relay Selection Under Physical Layer Security

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As demand for highly reliable data transmission in wireless networks has increased rapidly, cooperative communication technology has attracted a great deal of attention. In cooperative communication, some nodes, called eavesdroppers, illegally receive information that is intended for other communication links at the physical layer because of the broadcast characteristics of the wireless environment. Hence, Physical Layer Security is proposed to secure the communication link between two nodes against access by the eavesdroppers. In this paper, we propose and analyze the performance of decode-and-forward schemes with the best relay selection under Physical Layer Security with two operation protocols: first, only cooperative communication, and second, a combination of direct transmission and cooperative communication (the incremental protocol). In these schemes, a source transmits data to a destination with the assistance of relays, and the source-destination link is eavesdropped by one other node. The best relay is chosen in these proposals based on the maximum Signal-to-Noise ratio from the relays to the destination, and satisfies the secure communication conditions. The performance of each system is evaluated by the exact outage probability of the data rate over Rayleigh fading channels. Monte-Carlo results are presented to verify the theoretical analysis and are compared with a direct transmission scheme under Physical Layer Security and compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireles networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  3. Krikidis, I., Thompson, J., Mclaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12, 235–237.

    Article  Google Scholar 

  4. Xia, Minghua, & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Outage probability analysis under co-channel interferences and relay selection. IEEE Transactions on Communications, 60, 3252–3262.

    Article  MathSciNet  Google Scholar 

  5. Ikki, S. S., & Ahmed, M. H. (2010). Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection. IEEE Transaction on Communications, 58, 68–72.

    Article  Google Scholar 

  6. Tourki, K., Yang, Hong-Chuan, & Alouini, M.-S. (2011). Accurate outage analysis of incremental decode-and-forward opportunistic relaying. IEEE Transactions on Wireless Communications, 10, 1021–1025.

    Article  Google Scholar 

  7. Ju, Min Chul, Kim, Il-Min, & Kim, Dong In. (2012). Joint relay selection and relay ordering for DF-based cooperative relay networks. IEEE Transaction on Communications, 60, 908–915.

    Article  Google Scholar 

  8. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54, 1355–1367.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54, 2515–2534.

    Article  MathSciNet  Google Scholar 

  10. Goel, S., & Negi, R. (2008). Guaranteeing secrecy using artificial noise. IEEE Transactions on Wireless Communications, 7, 2180–2189.

    Article  Google Scholar 

  11. Dong, Lun, Han, Zhu, Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888.

    Article  MathSciNet  Google Scholar 

  12. Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communication, 8, 5003–5011.

    Article  Google Scholar 

  13. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4, 1787–1791.

    Article  Google Scholar 

  14. Sun, X., Xu, W., Jiang, M., & Zhao, C. (2012). Opportunistic selection for decode-and-forward cooperative networks with secure probabilistic constraints. Wireless Personal Communications. doi:10.1007/s11277-012-0771-7.

  15. Ikki, S. S., Uysal, M., Ahmed, M. H. (2009). Performance analysis of incremental-relay-selection decode-and-forward technique. Global Telecommunications Conference GLOBECOM, 1–6.

  16. Duy T. T., & Kong, H.-Y. (2012). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications. doi:10.1007/s11277-012-0616-4.

Download references

Acknowledgments

This work was supported by 2013 Special Research Fund of Electrical Engineering at University of Ulsan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Ngoc Son.

Appendices

Appendix A: Solving the Probability \(\Pr \left[ {D_2 =\left\{ \varnothing \right\} } \right] \) in Formula (19)

Substituting (9) and (10) into (19), we obtain (36) as

$$\begin{aligned} \Pr \left[ {D_2 =\left\{ \varnothing \right\} } \right] =\Pr \left[ {\gamma _{21} \le \gamma _{31} , \gamma _{22} \le \gamma _{32} , \ldots , \gamma _{2M} \le \gamma _{3M} } \right] =\prod _{i=1}^M {\Pr \left[ {\gamma _{2i} \le \gamma _{3i} } \right] }\quad \end{aligned}$$
(36)

The probability \(\Pr \left[ {\gamma _{2i} <\gamma _{3i} } \right] \) is given as

$$\begin{aligned} \Pr \left[ {\gamma _{2i} <\gamma _{3i} } \right]&= \int \limits _{0}^\infty {\int \limits _0^x {f_{3i} (x)f_{2i} (y)dydx} } =\int \limits _0^\infty {\lambda _3 e^{-\lambda _3 x}F_{2i} (x)dx} \nonumber \\&= \int \limits _0^\infty {\lambda _3 e^{-\lambda _3 x}\left( {1-e^{-\lambda _2 x}} \right) dx=\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \end{aligned}$$
(37)

where \(f_{2i} (\cdot ), f_{3i} (\cdot )\) and \(F_{2i} (\cdot )\) are the probability density functions (PDF) of the exponential random variables \(\gamma _{2i} , \gamma _{3i} \) and the CDF of the exponential random variable \(\gamma _{2i}\), respectively, and given as

$$\begin{aligned} f_{2i} (x)=\lambda _{2} e^{-\lambda _2 x}\end{aligned}$$
(38)
$$\begin{aligned} f_{3i} (x)=\lambda _3 e^{-\lambda _3 x}\end{aligned}$$
(39)
$$\begin{aligned} F_{2i} (x)=1-e^{-\lambda _2 x} \end{aligned}$$
(40)

From (37), the probability \(\Pr \left[ {D_2 =\left\{ \varnothing \right\} } \right] \) in (36) is obtained as

$$\begin{aligned} \Pr \left[ {D_2 =\left\{ \varnothing \right\} } \right] =\left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \right) ^{M} \end{aligned}$$
(41)

Appendix B: Solving the Probability in (24)

We note that there are \(C_M^{K}\) possible ways for the subset \(D_{2}\). Hence, formula (24) is expressed as

$$\begin{aligned} \Delta =\sum _{K=1}^M {C_M^K \Pr \left[ {\begin{array}{l} ASR_1 >0, ASR_2 >0, \ldots , ASR_K >0,ASR_{K+1} \le 0, ASR_{K+2}\\ \quad \le 0, \ldots , ASR_M \le 0, \\ R_{21} <R_P , R_{22} <R_P, \ldots , R_{2K} <R_P \nonumber \\ \end{array}} \right] }\\ \end{aligned}$$
(42)

Substituting (17) and (9) into (42), we obtain (43) as

$$\begin{aligned} \displaystyle \Delta&= \displaystyle \sum _{K=1}^M {C_M^K \Pr \left[ {\begin{array}{l} \gamma _{21} >\gamma _{31} , \gamma _{22} >\gamma _{32}, \ldots , \gamma _{2K} >\gamma _{3K} , \nonumber \\ \gamma _{2(K+1)} <\gamma _{3(K+1)} ,\gamma _{2(K+2)} <\gamma _{3(K+2)}, \ldots , \gamma _{2M} <\gamma _{3M} \\ \gamma _{21} <\theta , \gamma _{22} <\theta , \ldots , \gamma _{2K} <\theta \\ \end{array}} \right] } \nonumber \\ \displaystyle&= \displaystyle \sum _{K=1}^M {C_M^K \left\{ {\begin{array}{l} \Pr \left[ {\gamma _{2(K+1)} <\gamma _{3(K+1)} ,\gamma _{2(K+2)} <\gamma _{3(K+2)}, \ldots , \gamma _{2M} <\gamma _{3M} } \right] \nonumber \\ \times \Pr \left[ {\gamma _{31} <\gamma _{21} <\theta , \gamma _{32} < \gamma _{22} <\theta , \ldots , \gamma _{3K} <\gamma _{2K} <\theta } \right] \\ \end{array}} \right\} } \\ \displaystyle&= \displaystyle \sum _{K=1}^M {C_M^K \left\{ {\prod _{i=1}^K {\Pr \left[ {\gamma _{3i} <\gamma _{2i} <\theta } \right] } \prod _{j=K+1}^M {\Pr } \left[ {\gamma _{2j} <\gamma _{3j} } \right] } \right\} } \end{aligned}$$
(43)

The probability \(\Pr \left[ {\gamma _{3i} <\gamma _{2i} <\theta } \right] \) is derived as

$$\begin{aligned}&\displaystyle \Pr \left[ {\gamma _{3i} <\gamma _{2i} <\theta } \right] =\int \limits _0^\theta {f_{3i} (x)\int \limits _x^\theta {f_{2i} (y)dydx} } =\int \limits _0^\theta {\lambda _3 e^{-\lambda _3 x}\left[ {F_{2i} (\theta )-F_{2i} (x)} \right] dx} \nonumber \\&\quad \displaystyle =\int \limits _0^\theta {\lambda _3 e^{-\lambda _3 x}\left[ {e^{-\lambda _2 x}-e^{-\lambda _2 \theta }} \right] dx} =\frac{\lambda _3 }{\lambda _2 +\lambda _3 }+\frac{\lambda _2 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) }-e^{-\lambda _2 \theta } \end{aligned}$$
(44)

where \(f_{2i} (\cdot ), f_{3i} (\cdot )\)and \(F_{2i} (\cdot )\) are given in (38), (39) and (40) in “Appendix A”, respectively.

Substituting (37) and (44) into (43), we have the probability \(\Delta \) in (24) as

$$\begin{aligned} \displaystyle \Delta&= \displaystyle \sum _{K=1}^M {C_M^K \left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \right) ^{M-K}\left[ {\frac{\lambda _3 }{\lambda _2 +\lambda _3 }+\frac{\lambda _2 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) }-e^{-\lambda _2 \theta }} \right] ^{K}} \nonumber \\ \displaystyle&= \displaystyle \left( {1+\frac{\lambda _2 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) }-e^{-\lambda _2 \theta }} \right) ^{M}-\left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \right) ^{M} \end{aligned}$$
(45)

Appendix C: Solving the Probability in (28)

Similar to “Appendix B”, there are \(C_M^K \) possible ways for the subset \(D_{2}\). Hence, formula (28) is expressed as

$$\begin{aligned} \Omega =\sum _{K=1}^M {C_M^K \Pr \left[ {\begin{array}{l} ASR_1 >0, ASR_2 >0, \ldots , ASR_K >0,ASR_{K+1} \le 0, ASR_{K+2}\\ \quad \le 0,\ldots , ASR_M \le 0, \\ R_{31} >R_P , R_{32} >R_P, \ldots , R_{3K} >R_P \\ \end{array}} \right] }\nonumber \\ \end{aligned}$$
(46)

Substituting (17) and (10) into (46), formula (47) is obtained as

$$\begin{aligned} \displaystyle \Omega&= \sum _{K=1}^M {C_M^K \Pr \left[ {\begin{array}{l} \gamma _{21} >\gamma _{31} , \gamma _{22} >\gamma _{32}, \ldots , \gamma _{2K} >\gamma _{3K} , \nonumber \\ \displaystyle \gamma _{2(K+1)} <\gamma _{3(K+1)} ,\gamma _{2(K+2)} <\gamma _{3(K+2)}, \ldots , \gamma _{2M} <\gamma _{3M} \nonumber \\ \gamma _{31} >\theta , \gamma _{32} >\theta , \ldots , \gamma _{3K} >\theta \nonumber \\ \end{array}} \right] } \nonumber \\ \displaystyle&= \sum _{K=1}^M {C_M^K \left\{ {\begin{array}{l} \Pr \left[ {\gamma _{2(K+1)} <\gamma _{3(K+1)} ,\gamma _{2(K+2)} <\gamma _{3(K+2)}, \ldots , \gamma _{2M} <\gamma _{3M} } \right] \nonumber \\ \times \Pr \left[ {\gamma _{21} >\gamma _{31} >\theta , \gamma _{22} > \gamma _{32} >\theta , \ldots , \gamma _{2K} >\gamma _{3K} >\theta } \right] \nonumber \\ \end{array}} \right\} }\nonumber \\ \displaystyle&= \sum _{K=1}^M {C_M^K \left\{ {\prod _{i=1}^K {\Pr \left[ {\gamma _{2i} >\gamma _{3i} >\theta } \right] } \prod _{j=K+1}^M {\Pr } \left[ {\gamma _{2j} <\gamma _{3j} } \right] } \right\} } \end{aligned}$$
(47)

The probability \(\Pr \left[ {\gamma _{2i} >\gamma _{3i} >\theta } \right] \) is derived as

$$\begin{aligned} \displaystyle \Pr \left[ {\gamma _{2i} >\gamma _{3i} >\theta } \right]&= \displaystyle \int \limits _\theta ^\infty {f_{2i} (x)\int _\theta ^x {f_{3i} (y)dydx} } =\int \limits _\theta ^\infty {\lambda _2 e^{-\lambda _2 x}\left[ {F_{3i} (x)-F_{3i} (\theta )} \right] dx}\nonumber \\ \displaystyle&= \displaystyle \int \limits _\theta ^\infty {\lambda _2 e^{-\lambda _2 x}\left[ {e^{-\lambda _3 \theta }-e^{-\lambda _3 x}} \right] dx} =\frac{\lambda _3 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) } \end{aligned}$$
(48)

where \(f_{2i} (\cdot )\) and \(f_{3i} (\cdot )\) are given in (38) and (39) in “Appendix A”, respectively; \(F_{3i} (\cdot )\) is the CDF of the exponential random variable \(\gamma _{3i} \), and given as

$$\begin{aligned} F_{3i} (x)=1-e^{-\lambda _3 x} \end{aligned}$$
(49)

Substituting (37) and (48) into (47), we have the probability \(\Omega \) in (28) as

$$\begin{aligned} \Omega&= \sum _{K=1}^M {C_M^K \left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \right) ^{M-K}\left[ {\frac{\lambda _3 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) }} \right] ^{K}}\nonumber \\&= \left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }+\frac{\lambda _3 }{\lambda _2 +\lambda _3 }e^{-\theta \left( {\lambda _2 +\lambda _3 } \right) }} \right) ^{M}-\left( {\frac{\lambda _2 }{\lambda _2 +\lambda _3 }} \right) ^{M} \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, P.N., Kong, H.Y. Exact Outage Probability of a Decode-and-Forward Scheme with Best Relay Selection Under Physical Layer Security. Wireless Pers Commun 74, 325–342 (2014). https://doi.org/10.1007/s11277-013-1287-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1287-5

Keywords

Navigation