Skip to main content
Log in

Adaptive Cooperative Decode-and-Forward Transmission with Power Allocation Under Interference Constraint

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we examine an adaptive decode-and-forward cooperative protocol under interference constraint. In the proposed protocol, relying on the obtained instantaneous signal-to-noise ratios (SNRs), a direct link or relay link is used to transmit data from the secondary source to the secondary destination. In addition, once the relay link is used, the secondary source and relay must adapt their transmit power to maximize the instantaneous SNR of this link. To evaluate the performance of the proposed protocol, we derive closed-form lower-bound and upper-bound expressions for the outage probability over Rayleigh fading channel. Finally, various Monte-Carlo simulations are presented to verify our analysis and compare the performance of the proposed protocol with that of the direct transmission protocol in underlay cognitive network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.

    Article  Google Scholar 

  2. Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communication, 26, 203–213.

    Article  Google Scholar 

  3. Elkourdi, T., & Simeone, O. (2012). Spectrum leasing via cooperation with multiple primary users. IEEE Transactions on Vehicular Technology, 61, 820–825.

    Article  Google Scholar 

  4. Han, Y., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8, 4945–4950.

    Article  Google Scholar 

  5. Han, Y., Ting, S. H., & Pandharipande, A. (2010). Cooperative spectrum sharing with distributed secondary user selection. 2010 IEEE International Conference on Communications (ICC) (pp. 1–5).

  6. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, 69, 857–878.

    Google Scholar 

  7. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46, 182–184.

    Article  Google Scholar 

  8. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communication, 10, 390–395.

    Article  Google Scholar 

  9. Ding, H., Ge, J., da Costa, B., & Zhuoqin Jiang, D. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.

    Article  Google Scholar 

  10. Duong, T. Q., da Costa, D. B., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61, 2368–2374.

    Article  Google Scholar 

  11. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15, 1317–1319.

    Article  Google Scholar 

  12. Li, D. (2012). Performance analysis of MRC diversity for cognitive radio systems. IEEE Transactions on Vehicular Technology, 61, 849–853.

    Article  Google Scholar 

  13. Khuong, H.-V. (2013). Exact outage probability of underlay cognitive cooperative networks over rayleigh fading channels. Wireless Personal Communications, 70, 1001–1009.

    Google Scholar 

  14. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions Wireless Communications, 6, 649–658.

    Article  Google Scholar 

  15. Peha, J. M. (2005). Approaches to spectrum sharing. IEEE Communications Magazine, 43, 10–12.

    Google Scholar 

  16. Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transactions on Communications, 8, 102–106.

    Google Scholar 

  17. Pei, E., Wang, S., & Zhang, Z. (2011). Capacity and optimal power allocation for spectrum-sharing with primary transmission consideration in fading channels. IEEE Communications Letters, 15, 389–391.

    Article  Google Scholar 

  18. Liu, P., Tao, Z., Lin, Z., Erkip, E., & Panwar, S. (2006). Cooperative wireless communications: A cross-layer approach. IEEE Wireless Communication, 13, 84–92.

    Article  Google Scholar 

  19. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  20. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by 2014 Special Research Fund of Electrical Engineering at University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Yun Kong.

Appendices

Appendix A

1.1 Proof of (4)

For ease of presentation, we set \(y=P_{S}^{CC}\) and from (2), we have \(P_{R}^{CC} =\frac{I_{P} }{\gamma _{3} }-y\). Hence, the optimization problem can be formulated as follows:

$$\begin{aligned}&\mathop {\max }\limits _{y} f(y)=\min \left( {y\gamma _{1}, \left( {\frac{I_{P} }{\gamma _{3} }-y} \right) \gamma _{2} } \right) \end{aligned}$$
(13)
$$\begin{aligned}&\text{ s.t.: }\quad \text{ s.t.: } 0<y\le \frac{I_{P} }{\gamma _{3}},\quad \text{ and } \end{aligned}$$
(14)
$$\begin{aligned}&\frac{I_{P} }{\gamma _{3} }-\frac{I_{P} }{\gamma _{4} }\le y \end{aligned}$$
(15)

where constraints (14) and (15) are obtained by \(P_{S}^{\textit{CC}} \le I_{P} /\gamma _{3}\) and \(P_{R}^{\textit{CC}} \le I_{P} /\gamma _{4}\), respectively.

Next, we consider three cases as follows:

Case 1::

\(\frac{\gamma _{3} }{\gamma _{4} }\ge 1\)

In this case, the constraint (15) is omitted and the function \(f\left( y \right) \) obtains the optimal value, i.e., \(f_{\max } \left( y \right) =\frac{I_{P} \gamma _{1} \gamma _{2} }{\left( {\gamma _{1} +\gamma _{2} } \right) \gamma _{3} }\), as \(y\gamma _{1} =\left( {\frac{I_{P} }{\gamma _{3} }-y} \right) \gamma _{2}\) or \(y=\frac{I_{P} \gamma _{2} }{\left( {\gamma _{1} +\gamma _{2} } \right) \gamma _{3} }\).

Case 2::

\(\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\le \frac{\gamma _{3} }{\gamma _{4} }<1\)

In this case, because \(\frac{I_{P} }{\gamma _{3} }-\frac{I_{P} }{\gamma _{4} }\le \frac{I_{P} \gamma _{2} }{\left( {\gamma _{1} +\gamma _{2} } \right) \gamma _{3} }\), similar to Case 1, the optimal value of \(f\left( y \right) \) is \(f_{\max } \left( y \right) =I_{P} \frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }\) when \(y=I_{P} \frac{\gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }\).

Case 3::

\(\frac{\gamma _{3} }{\gamma _{4} }<\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\)

In this case, because \(\frac{I_{P} }{\gamma _{3} }-\frac{I_{P} }{\gamma _{4} }>\frac{I_{P} \gamma _{2} }{\left( {\gamma _{1} +\gamma _{2} } \right) \gamma _{3} }\), so \(y\gamma _{1} >\left( {\frac{I_{P} }{\gamma _{3} }-y} \right) \gamma _{2}\) and \(f\left( y \right) =\left( {\frac{I_{P} }{\gamma _{3} }-y} \right) \gamma _{2}\). Similar to Case 2, the function \(f\left( y \right) \) obtains the optimal value \(f_{\max } \left( y \right) =I_{P} \frac{\gamma _{2} }{\gamma _{4} }\) as \(y=\frac{I_{P} }{\gamma _{3} }-\frac{I_{P} }{\gamma _{4} }\).

From results obtained in Case 1, Case 2 and Case 3, the optimal solution \(f_{\max } \left( y \right) \) can be given as follows:

$$\begin{aligned} f_{\max } \left( y \right) =\left\{ {\begin{array}{ll} I_{P} \frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) } ;&{}\quad \text{ if }\quad \frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }<\frac{\gamma _{3} }{\gamma _{4} } \quad \text{ as }\quad y=\frac{I_{P} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }. \\ I_{P} \frac{\gamma _{2} }{\gamma _{4} };&{}\quad \text{ if }\quad \frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4} } \quad \text{ as }\quad y=\frac{I_{P} }{\gamma _{3} }-\frac{I_{P} }{\gamma _{4}}.\\ \end{array}} \right. \end{aligned}$$
(16)

From (16) and \(\gamma _{\max }^{CC} =f_{\max } \left( y \right) /N_{0}\), we obtain (4).

Appendix B

1.1 Proof of (9)

Considering the probability \(\Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }<\rho ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }<\frac{\gamma _{3} }{\gamma _{4} } ,\frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }<\rho } \right] \) in (8); applying the inequality \(\frac{\gamma _{1} \gamma _{2} }{\gamma _{1} +\gamma _{2} }\le \min \left( {\gamma _{1}, \gamma _{2} } \right) \), it can be bounded as

$$\begin{aligned}&\Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }<\rho ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }<\frac{\gamma _{3} }{\gamma _{4} } ,\frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }<\rho } \right] \ge \nonumber \\&\quad \ge \Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }<\rho ,\min \left( {\gamma _{1} ,\gamma _{2} } \right) <\frac{\gamma _{2} \gamma _{3} }{\gamma _{4} } ,\min \left( {\gamma _{1} ,\gamma _{2} } \right) <\rho \gamma _{3} } \right] \\&\quad \ge \underbrace{\Pr \left[ {\gamma _{1} \ge \gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,\gamma _{4} <\gamma _{3} ,\gamma _{2} <\rho \gamma _{3} } \right] }_{J_1} \nonumber \\&\qquad +\underbrace{\Pr \left[ {\gamma _{1} <\gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,\gamma _{4} \gamma _{1} <\gamma _{2} \gamma _{3} ,\gamma _{1} <\rho \gamma _{3} } \right] }_{J_2}\nonumber \end{aligned}$$
(17)

Considering the probability \(J_{1}\) in (17), it can be formulated as

$$\begin{aligned} J_1&= \Pr \left[ {\gamma _{3} >\max \left( {\gamma _{4},\frac{\gamma _{0} }{\rho },\frac{\gamma _{2} }{\rho }} \right) ,\gamma _{1} \ge \gamma _{2} } \right] \nonumber \\&= \int \limits _{0}^{+\infty } {\lambda _{3} e^{-\lambda _{3} x}\Pr } \left[ {\max \left( {\gamma _{4} ,\frac{\gamma _{0} }{\rho },\frac{\gamma _{2} }{\rho }} \right) <x,\gamma _{1} \ge \gamma _{2} } \right] dx \end{aligned}$$
(18)

In (18), \(\Pr \left[ {\max \left( {\gamma _{4} ,\frac{\gamma _{0} }{\rho },\frac{\gamma _{2} }{\rho }} \right) <x,\gamma _{1} \ge \gamma _{2} } \right] \) can be calculated as

$$\begin{aligned}&\Pr \left[ {\max \left( {\gamma _{4} ,\frac{\gamma _{0} }{\rho },\frac{\gamma _{2} }{\rho }} \right) <x,\gamma _{1} \ge \gamma _{2} } \right] \nonumber \\&\quad = \Pr \left[ {\gamma _{4} \le x} \right] \Pr \left[ {\gamma _{0} \le \rho x} \right] \int \limits _{0}^{\rho x} {\lambda _{2} e^{-\lambda _{2} u}du} \int \limits _{u}^{+\infty } {\lambda _{1} e^{-\lambda _{1} v}dv} \nonumber \\&\quad =\frac{\lambda _{2} }{\lambda _{1} +\lambda _{2} }\left( {1-e^{-\lambda _{4} x}} \right) \left( {1-e^{-\lambda _{0} \rho x}} \right) \left( {1-e^{-\left( {\lambda _{1} +\lambda _{2} } \right) \rho x}} \right) \end{aligned}$$
(19)

Substituting (19) into (18) and after some simple manipulation, we get

$$\begin{aligned} J_{1}&= \frac{\lambda _{2} \rho }{\lambda _{3} +\left( {\lambda _{1} +\lambda _{2} } \right) \rho }-\frac{\lambda _{2} \lambda _{3} \rho }{\left( {\lambda _{3} +\lambda _{4} } \right) \left[ {\lambda _{3} +\lambda _{4} +\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] } \nonumber \\&\quad -\frac{\lambda _{2} \lambda _{3} \rho }{\left( {\lambda _{3} +\lambda _{0} \rho } \right) \left[ {\lambda _{3} +\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho } \right] } \nonumber \\&\quad +\frac{\lambda _{2} \lambda _{3} \rho }{\left( {\lambda _{3} +\lambda _{4} +\lambda _{0} \rho } \right) \left[ {\lambda _{3} +\lambda _{4} +\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho } \right] } \end{aligned}$$
(20)

Now, considering the probability \(J_{2}\) in (17), using the inequality \(\gamma _{1} <\rho \gamma _{3}\), we have

$$\begin{aligned} J_{2}&= \Pr \left[ {\gamma _{1} <\gamma _{2} ,\gamma _{0} <\rho \gamma _{3}, \gamma _{1} \gamma _{4} <\gamma _{2} \gamma _{3} ,\gamma _{1} <\rho \gamma _{3} } \right] \nonumber \\&\ge \underbrace{\Pr \left[ {\gamma _{1} <\gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,\rho \gamma _{4} <\gamma _{2} ,\gamma _{1} <\rho \gamma _{3} } \right] }_{J_{3}} \end{aligned}$$
(21)

Similar to (18), we can formulate the probability \(J_{3}\) in (21) as follows:

$$\begin{aligned} J_{3}&= \Pr \left[ {\gamma _{2} >\max \left( {\gamma _{1} ,\rho \gamma _{4} } \right) ,\gamma _{0} <\rho \gamma _{3} ,\gamma _{1} <\rho \gamma _{3} } \right] \nonumber \\&= \int \limits _{0}^{+\infty } {\left\{ {\lambda _{2} e^{-\lambda _{2} x}\Pr \left[ {\gamma _{4} \le \frac{x}{\rho }} \right] \int \limits _0^x {\lambda _{1} e^{-\lambda _{1} u}du} \int \limits _{\frac{u}{\rho }}^{+\infty } {\lambda _{3} e^{-\lambda _{3} v}dv} \int \limits _0^{\rho v} {\lambda _{0} e^{-\lambda _{0} t}dt} } \right\} dx} \end{aligned}$$
(22)

From (22) and after some manipulation, we obtain

$$\begin{aligned} J_3&= \frac{\lambda _{0} \lambda _{1} \lambda _{4} \rho ^{2}\left[ {2\lambda _{3} +\left( {\lambda _{0} +\lambda _{1} } \right) \rho } \right] }{\left( {\lambda _{3} +\lambda _{0} \rho } \right) \left( {\lambda _{3} +\lambda _{1} \rho } \right) \left( {\lambda _{4} +\lambda _{2} \rho } \right) \left[ {\lambda _{3} +\left( {\lambda _{0} +\lambda _{1} } \right) \rho } \right] } \nonumber \\&\quad -\frac{\lambda _{1} \lambda _{2} \lambda _{4} \rho ^{2}}{\left( {\lambda _{3} +\lambda _{1} \rho } \right) \left[ {\lambda _{3} +\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] \left[ {\lambda _{3} +\lambda _{4} \left( {\lambda _{0} +\lambda _{1} } \right) \rho } \right] } \nonumber \\&\quad +\frac{\lambda _{1} \lambda _{2} \lambda _{3} \lambda _{4} \rho ^{2}}{\left( {\lambda _{3} +\lambda _{0} \rho } \right) \left[ {\lambda _{3} +\left( {\lambda _{0} +\lambda _{1} } \right) \rho } \right] \left[ {\lambda _{3} +\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho } \right] }\nonumber \\&\times \frac{1}{\lambda _{3} +\lambda _{4} \left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho } \end{aligned}$$
(23)

Now, considering the probability \(\Pr \left[ {\gamma _{0} <\rho \gamma _{3}, \frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4}}, \gamma _{2} \le \rho \gamma _{4} } \right] \) in (8); it can be rewritten as follows:

$$\begin{aligned}&\Pr \left[ {\gamma _{0} <\rho \gamma _{3} ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4}},\gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&\quad =\Pr \left[ {\gamma _{1} \ge \gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,\frac{\gamma _{1} +\gamma _{2} }{\gamma _{1} }\frac{\gamma _{3} }{\gamma _{4} }\le 1,\gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&\qquad +\Pr \left[ {\gamma _{1} <\gamma _{2} ,\gamma _{0} <\rho \gamma _{3},\frac{\gamma _{1} +\gamma _{2} }{\gamma _{1} }\frac{\gamma _{3} }{\gamma _{4} }\le 1,\gamma _{2} \le \rho \gamma _{4} } \right] \end{aligned}$$
(24)

With \(\gamma _{1} \ge \gamma _{2}\), we have \(\frac{\gamma _{1} +\gamma _{2} }{\gamma _{1} }\frac{\gamma _{3} }{\gamma _{4} }<\frac{2\gamma _{3} }{\gamma _{4} }\) and with \(\gamma _{1} <\gamma _{2}\) and \(\gamma _{2} \le \rho \gamma _{4}\), we obtain \(\frac{\gamma _{1} +\gamma _{2} }{\gamma _{1} }\frac{\gamma _{3} }{\gamma _{4} }\le \frac{\gamma _{1} +\gamma _{2} }{\gamma _{1} \gamma _{2} }\rho \gamma _{3} \le \frac{2\rho \gamma _{3} }{\gamma _{1}}\). Hence, (24) can be bounded by

$$\begin{aligned}&\Pr \left[ {\gamma _{0} <\rho \gamma _{3} ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4}},\gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&\quad \ge \underbrace{\Pr \left[ {\gamma _{1} \ge \gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,2\gamma _{3} \le \gamma _{4} ,\gamma _{2} \le \rho \gamma _{4} } \right] }_{J_4 }\nonumber \\&\quad +\underbrace{\Pr \left[ {\gamma _{1} <\gamma _{2},\gamma _{0} <\rho \gamma _{3} ,2\rho \gamma _{3} \le \gamma _{1},\gamma _{2} \le \rho \gamma _{4} } \right] }_{J_{5}} \end{aligned}$$
(25)

Considering the probability \(J_{4}\) in (25), it can be calculated as

$$\begin{aligned} J_{4}&= \Pr \left[ {\gamma _{2} \le \min \left( {\gamma _{1} ,\rho \gamma _{4} } \right) ,\frac{\gamma _{0} }{\rho }<\gamma _{3} <\frac{\gamma _{4} }{2}} \right] \nonumber \\&= \int \limits _0^{+\infty } {\left\{ {\lambda _{2} e^{-\lambda _{2} x}\Pr \left[ {\gamma _{1} \ge x} \right] \int \limits _{\frac{x}{\rho }}^{+\infty } {\lambda _{4} e^{-\lambda _{4} u}du} \int \limits _0^{\frac{u}{2}} {\lambda _{3} e^{-\lambda _{3} v}dv} \int \limits _0^{\rho v} {\lambda _{0} e^{-\lambda _{0} t}dt} } \right\} dx} \nonumber \\&= \frac{\lambda _{0} \lambda _{2} \rho ^{2}}{\left( {\lambda _{3} +\lambda _{0} \rho } \right) \left[ {\lambda _{4} +\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] }-\frac{4\lambda _{2} \lambda _{4} \rho }{\left( {\lambda _{3} +2\lambda _{4} } \right) \left[ {\lambda _{3} +2\lambda _{4} +2\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] } \nonumber \\&\quad +\frac{4\lambda _{2} \lambda _{3} \lambda _{4} \rho }{\left( {\lambda _{3} +\lambda _{0} \rho } \right) \left( {\lambda _{3} +2\lambda _{4} +\lambda _{0} \rho } \right) \left[ {\lambda _{3} +2\lambda _{4} +\left( {\lambda _{0} +2\lambda _{1} +2\lambda _{2} } \right) \rho } \right] } \end{aligned}$$
(26)

Next, we calculate the probability \(J_{5}\) in (25) as

$$\begin{aligned} J_{5}&= \Pr \left[ {\gamma _{1} <\gamma _{2} ,\gamma _{0} <\rho \gamma _{3} ,2\rho \gamma _{3} \le \gamma _{1} ,\gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&= \int \limits _0^{+\infty } {\lambda _{0} e^{-\lambda _{0} x}dx\int \limits _{\frac{x}{\rho }}^{+\infty } {\lambda _{3} e^{-\lambda _{3} y}dy} } \int \limits _{2\rho y}^{+\infty } {\lambda _{1} e^{-\lambda _{1} z}dz} \int \limits _z^{+\infty } {\lambda _{2} e^{-\lambda _{2} v}dv} \int \limits _{\frac{v}{\rho }}^{+\infty } {\lambda _{4} e^{-\lambda _{4} t}dt} \nonumber \\&= \frac{\lambda _{0} \lambda _{1} \lambda _{2} \lambda _{3} \rho ^{3}}{\left[ {\lambda _{4} +\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] \left[ {\lambda _{3} +2\lambda _{4} +2\left( {\lambda _{1} +\lambda _{2} } \right) \rho } \right] \left[ {\lambda _{4} +\lambda _{2} \rho } \right] }\nonumber \\&\times\;\frac{1}{\left[ {\lambda _{3} +2\lambda _{4} +\left( {\lambda _{0} +2\lambda _{1} +2\lambda _{2} } \right) \rho } \right] } \end{aligned}$$
(27)

From (8), (17), (21) and (25), the outage probability \(P_{CC}^{out}\) can be bounded as

$$\begin{aligned} P_{CC}^{out} \ge J_{1} +J_{3} +J_{4} +J_{5} =P_{CC}^{LB} \end{aligned}$$
(28)

Hence, substituting the results in (20), (23), (26) and (27) into (28), we obtain (9).

Appendix C

1.1 Proof of (10)

Considering the probability \(\Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }<\rho ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }<\frac{\gamma _{3} }{\gamma _{4}}, \frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }<\rho } \right] \) in (8); it can be bounded as

$$\begin{aligned} \Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }\!<\!\rho ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }<\frac{\gamma _{3} }{\gamma _{4}}, \frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }\!<\!\rho } \right] <\underbrace{\Pr \left[ {\frac{\gamma _{0} }{\gamma _{3} }\!<\!\rho , \frac{\gamma _{1} \gamma _{2} }{\gamma _{3} \left( {\gamma _{1} +\gamma _{2} } \right) }\!<\!\rho } \right] }_{I_{1}}\quad \end{aligned}$$
(29)

Setting \(X=\frac{\gamma _{1} \gamma _{2} }{\gamma _{1} +\gamma _{2}}\), the CDF of \(X\) is given as

$$\begin{aligned} F_X \left( x \right) =1-2\sqrt{\lambda _{1} \lambda _{2} }x \exp \left( {-\left( {\lambda _{1} +\lambda _{2} } \right) x} \right) K_1 \left( {2\sqrt{\lambda _{1} \lambda _{2} }x } \right) \end{aligned}$$
(30)

where \(K_{1} \left( . \right) \) is modified Bessel Function of the second kind [20].

From (29) and (30), we can formulate \(I_{1}\) as

$$\begin{aligned} I_{1} =\Pr \left[ {\gamma _{0} <\rho \gamma _{3}, \frac{\gamma _{1} \gamma _{2} }{\gamma _{1} +\gamma _{2} }<\rho \gamma _{3} } \right] =\int \limits _{0}^{+\infty } {f_{\gamma _{3} } \left( x \right) F_{\gamma _{0} } \left( {\rho x} \right) F_x \left( {\rho x} \right) } dx \end{aligned}$$
(31)

Now, we have the following integral:

$$\begin{aligned} \int \limits _{0}^{+\infty } {\alpha _{1} \exp \left( {-\alpha _{2} x} \right) K_{1} \left( {\alpha _{3} x} \right) } dx=\frac{\alpha _{1} \alpha _{2} }{\alpha _{3} \left( {\alpha _{2}^2 -\alpha _{3}^2 } \right) }-\frac{\alpha _{1} \alpha _{3} }{\left( {\alpha _{2}^{2} -\alpha _{3}^{2} } \right) ^{3/2}}\cosh ^{-1}\left( {\frac{\alpha _{2} }{\alpha _{3} }} \right) \end{aligned}$$
(32)

where \(\alpha _{1}, \,\alpha _{2}\) and \(\alpha _{3}\) are positive real numbers, and \(\cosh ^{-1}\left( x \right) \) is inverse hyperbolic cosine, which is given as \(\cosh ^{-1}\left( x \right) =\ln \left( {x+\sqrt{x^{2}-1}} \right) \).

Substituting the PDF \(f_{\gamma _{3} } \left( x \right) =\lambda _{3} \exp \left( {-\lambda _{3} x} \right) \), the CDF \(F_{\gamma _{0} } \left( {\rho x} \right) =1-\exp \left( {-\lambda _{0} \rho x} \right) \), the CDF \(F_{x} \left( {\rho x} \right) \) obtained in (30) and the result obtained in (32) into (31), we obtain

$$\begin{aligned} I_1&= \frac{\lambda _{0} \rho }{\lambda _{0} \rho +\lambda _{3} }\!-\!\frac{\lambda _{3} \left[ {\left( {\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] }{\left[ {\left( {\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] ^{2}-4\lambda _{1} \lambda _{2} \rho ^{2}}+\frac{4\lambda _{1} \lambda _{2} \lambda _{3} \rho ^{2}\, \text{ arccosh }\,\left[ {\frac{\left( {\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} }{2\sqrt{\lambda _{1} \lambda _{2} }\rho }} \right] }{\left\{ {\left[ {\left( {\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] ^{2}-4\lambda _{1} \lambda _{2} \rho ^{2}} \right\} ^{3/2}} \nonumber \\&\quad \!+\!\frac{\lambda _{3} \left[ {\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] }{\left[ {\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] ^{2}-4\lambda _{1} \lambda _{2} \rho ^{2}}\!-\!\frac{4\lambda _{1} \lambda _{2} \lambda _{3} \rho ^{2}\, \text{ arccosh }\,\left[ {\frac{\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} }{2\sqrt{\lambda _{1} \lambda _{2} }\rho }} \right] }{\left\{ {\left[ {\left( {\lambda _{0} +\lambda _{1} +\lambda _{2} } \right) \rho +\lambda _{3} } \right] ^{2}-4\lambda _{1} \lambda _{2} \rho ^{2}} \right\} ^{3/2}}\nonumber \\ \end{aligned}$$
(33)

Similarly, the outage probability \(\Pr \left[ {\gamma _{0} <\rho \gamma _{3}, \frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4} } ,\gamma _{2} \le \rho \gamma _{4} } \right] \) in (8) can be bounded as follows:

$$\begin{aligned}&\Pr \left[ {\gamma _{0} <\rho \gamma _{3} ,\frac{\gamma _{1} }{\gamma _{1} +\gamma _{2} }\ge \frac{\gamma _{3} }{\gamma _{4}}, \gamma _{2} \le \rho \gamma _{4} } \right] <\Pr \left[ {\gamma _{0} <\rho \gamma _{3}, \gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&\quad =\Pr \left[ {\gamma _{0} <\rho \gamma _{3} } \right] \Pr \left[ {\gamma _{2} \le \rho \gamma _{4} } \right] \nonumber \\&\quad <\frac{\lambda _{0} \lambda _{2} \rho ^{2}}{\left( {\lambda _{0} \rho +\lambda _{3} } \right) \left( {\lambda _{2} \rho +\lambda _{4} } \right) }. \end{aligned}$$
(34)

From (8), (29), (33) and (34), we have \(P_{CC}^{out} <P_{CC}^{UB}\), where \(P_{CC}^{UB}\) is given as in (10).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duy, T.T., Kong, HY. Adaptive Cooperative Decode-and-Forward Transmission with Power Allocation Under Interference Constraint. Wireless Pers Commun 74, 401–414 (2014). https://doi.org/10.1007/s11277-013-1292-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1292-8

Keywords

Navigation