Skip to main content
Log in

A New Linearized CCII-Based Fully Differential CMOS Transconductor Used for \(\hbox {G}_\mathrm{m}\)-C Active Filters Implementation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper presents a new linearized, of high performance, fully differential transconductor, based on class AB second generation current conveyor (CCII) in CMOS technology. The proposed circuit is composed by two positive CCII cells connected in series and a common mode feedback loop. Unlike other CMOS circuits on the basis of CCII reported in the literature, the proposed transconductor cell allows to obtain a higher transconductance value, an improved linearity and operates at high frequency for a 3.3 V supply voltage. As an application, the new transconductor cell in CMOS technology is used for designing a 4th order differential \(\hbox {G}_\mathrm{m}\)-C low-pass filters in different approximations (Butterworth and Chebyshev) operating up to 300 MHz cut-off frequency. The simulations performed in 130 nm CMOS process confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (Eds.). (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus Ltd.

    Google Scholar 

  2. Laker, K. R., & Willy, M. C. (1994). Design of analog integrated circuits and systems. New York: McGraw-Hill.

    Google Scholar 

  3. Sedra, A., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17, 132–134.

    Article  Google Scholar 

  4. Kurashina, T., Ogawa, S., & Watanabe, K. (1998). A high performance class AB current conveyor. In IEEE international conference on electronics, circuits and systems (vol. 3, pp. 143–146). 7–10 September 1998.

  5. Mahattanakul, J., Toumazou, C. & Akbar, A. A. (1997). DC Stable CCII-based instantaneous companding integrator. In IEEE international symposium on circuits and systems (pp. 821–824). Hong Kong, 9–12 June 1997.

  6. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill Higher Education Inc.

    Google Scholar 

  7. Alzaher, H. A., Elwan, H., & Ismail, M. (2003). A CMOS fully balanced second-generation current conveyor. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 50(6), 278–287.

    Article  Google Scholar 

  8. Fabre, A., & Alami, M. (1997). A precise macromodel for second generation current conveyors. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 44(7), 639–642.

    Article  MATH  Google Scholar 

  9. Koli, K., & Halonen, K. A. I. (2000). CMRR enhancement techniques for current-mode instrumentation amplifiers. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47(5), 622–632.

    Article  Google Scholar 

  10. Lindfors, S., Jussila, J., Halonen, K., & Siren, L. (1999). A 3-V continuous-time filter with on-chip tuning for IS-95. IEEE Journal of Solid-State Circuits, 34(8), 1150–1154.

    Article  Google Scholar 

  11. Acosta, L., Jiménez, M., Carvajal, R. G., Lopez-Martin, A. J., & Ramírez-Angulo, J. (2009). Highly linear tunable CMOS Gm-C low-pass filter. IEEE Transactions on Circuits and Systems-I: Regular Papers, 56(10), 2145–2158.

    Article  MathSciNet  Google Scholar 

  12. Bozomitu, R. G., & Cehan, V. (2011). A new differential CCII transconductor with increased linearity in bipolar technology. In Proceedings of international symposium on signals, circuits and systems, ISSCS 2011, Article No. 5978692 (pp. 193–196) June 30–July 1.

  13. Chang, Z., Haspeslagh, D., & Verfaille, J. (1997). A highly linear CMOS Gm-C bandpass filter with on-chip frequency tuning. IEEE Journal of Solid-State Circuits, 32(3) 388–397.

    Google Scholar 

  14. Rijns, J. J. F. (1996). CMOS low-distortion high-frequency variable-gain amplifier. IEEE Journal of Solid-State Circuits, 31(7), 1029–1034.

    Article  Google Scholar 

  15. Fabre, A., & Alami, M. (1995). Universal current mode biquad implemented from two second generation current conveyors. IEEE Transactions on Circuits and Systems-1 Fundamental Theory and Applications, 42(7), 383–385.

    Article  Google Scholar 

  16. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1998). High-frequency High-Q BiCMOS current-mode bandpass filter and mobile communication application. IEEE Journal of Solid-State Circuits, 33(4), 614–625.

    Google Scholar 

  17. Fabre, A., Dayoub, F., Duruisseau, L., & Kamoun, M. (1994). High input impedance insensitive second-order filters implemented from current conveyors. IEEE Transactions Circuits and Systems-I: Fundamental Theories and Applications, 41(12), 918–921.

    Article  Google Scholar 

  18. Liu, S., Tsao, H., & Wu, J. (1991). CCII based continuous-time filters with reduced gain bandwidth sensitivity. IEE Proceedings-G, 138, 210–216.

    Google Scholar 

  19. Shujiang, Z., & Liping, G. (1994). A novel approach For designing continuous-time filters based on CCII. In IEEE international symposium on circuits and systems ISCAS’94 (Vol. 5, pp. 553–556).

  20. Elwan, H. O., & Soliman, A. M. (1996). A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 43(9), 663–670.

    Article  Google Scholar 

  21. Karybakas, C. A., & Papazoglou, C. A. (1999). Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 46(4), 527–539.

    Article  Google Scholar 

  22. Lopez-Martin, A. J., Ramirez-Angulo, J., & Carvajal, R. G. (2005). Design of high-performance tunable filters based on current conveyors. In Proceedings of the 2005 European conference on circuit theory and design (vol. 2, pp. II/103–106). 28 August–2 September.

  23. Ben Salem, S., Masmoudi, D. S., Fakhfakh, M., Loulou, M., & Masmoudi, N. (2006). High frequency CCII based oscillators and multifunction filters. In International conference on design and test of integrated systems in nanoscale technology DTIS 2006 (pp. 141–144). 5–7 September 2006.

  24. El Feki, N. B., Ben Samir S., Masmoudi, D. S. & Derbel, N. (2008). Optimization of a rail to rail low voltage CCII for active filter applications. In International conference on design and technology of integrated systems in nanoscale Era, DTIS 2008 (pp. 1–6). 25–27 March 2008.

  25. Biolek, D. (1995). Novel signal flow graphs of current conveyors. In Proceedings of the 38th Midwest symposium: Circuits and systems (Vol. 2, pp. 1058–1061). 13–16 August 1995.

  26. Lin, C.-L. Weng, R.-M., Lee, M.-H., & Kuo, T.-S. (1998). A new current-mode Universal filter using CCII and OTAs. In The 1998 IEEE Asia-Pacific Conference on Circuits and Systems, IEEE APCCAS 1998 (pp. 253–254). 24–27 November 1998.

  27. Thyagarajan, S. V., Pavan, S., & Sankar, P. (2011). Active-RC filters using the Gm-assisted OTA-RC technique. IEEE Journal of Solid-State Circuits, 46(7), 1522–1533.

    Article  Google Scholar 

  28. Thyagarajan, S. V., Pavan, S., & Sankar, P. (2010). Low distortion active filters using the Gm-assisted OTA-RC technique. In Proceedings of the ESSCIRC (pp. 162–165). 14–16 September 2010.

  29. Zhiqiang, G., Jinxiang, W., Fengchang, L., Mingyan, Y., & Zhongzhao, Zhang. (2009). Wideband reconfigurable CMOS Gm-C filter for wireless applications. In 16th IEEE international conference on electronics, circuits, and systems ICECS 2009 (pp. 179–182). 13–16 December 2009.

  30. Hori, S., Maeda, T., Yano, H., Matsuno, N., Numata, K., Yoshida, N., et al. (2003). A widely tunable CMOS Gm-C filter with a negative source degeneration resistor transconductor. In Proceedings of the 29th European solid-state circuits conference ESSCIRC’03 (pp. 449–452). 16–18 September 2003.

  31. Voorman, H., & Veenstra, H. (2000). Tunable high-frequency Gm-C filters. IEEE Journal of Solid-State Circuits, 35(8), 1097–1108.

    Article  Google Scholar 

  32. Kuhn, W. B., Nobbe, D., Dylan, K., & Orsborn, A. W. (2003). Dynamic range performance of on-chip RF bandpass filters. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 50(10), 685–694.

    Article  Google Scholar 

  33. Frey, D. R. (1996). Exponential state space filters: A generic current mode design strategy. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 43(1), 34–42.

    Article  MathSciNet  Google Scholar 

  34. Koziel, S., & Szczepanski, S. (2002). Design of highly linear tunable CMOS OTA for continuous-time filters. IEEE Transactions on Circuits and Systems-II: Analog and, Digital Signal Processing, 49(2), 110–122.

    Article  Google Scholar 

  35. Tsividis, Y. P., Czarnul, Z., & Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronics Letters, 22, 245–246.

    Article  Google Scholar 

  36. Jaikla, W., Silapan, P., Chanapromma, C., & Siripruchyanun, M. (2009). Practical implementation of CCTA based on commercial CCII and OTA. In International symposium on intelligent signal processing and communications systems, ISPACS 2008, pp. 1–4, 8–11 February 2009.

  37. Geiger, R. L., & Sanchez-Sinencio, E. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1, 20–32.

    Article  Google Scholar 

  38. Tsividis, Y. P. (1994). Integrated continuous-time filter design - An overview. IEEE J. Solid-State Circuits, 29, 166–176.

    Article  Google Scholar 

  39. Chang, C.-M. (1999). New multifunction OTA-C biquads. IEEE Transactions on Circuits and Systems-II, 46, 820–823.

    Article  Google Scholar 

  40. Chang, C.-M., & Pai, S.-K. (2000). Universal current-mode OTA-C biquad with the minimum components. IEEE Transactions on Circuits and Systems-I, 47(8), 1235–1238.

    Article  Google Scholar 

  41. Rezaei, F., & Azhari, S. J. (2010). Ultra low-voltage, rail-to-rail input/output stage operational transconductance amplifier (OTA) with high linearity and its application in a Gm-C filter. In The 11th international symposium on quality electronic design (ISQED) (pp. 231–236). 22–24 March 2010.

  42. Bozomitu, R. G., & Cojan, N. (2011). A VLSI implementation of a new low voltage 5(th) order differential G(m)-C low-pass filter with auto-tuning loop in CMOS technology. In Advances in electrical and computer engineering ISSN 1582-7445 (Vol. 11, Issue 1, pp. 23–30).

  43. Huelsman, L. P., & Allen, P. E. (1980). Introduction to the theory and design of active filters. New York: McGraw-Hill Inc.

    Google Scholar 

  44. Sedra, A. S., & Brackett, P. O. (1978). Filter theory and design: Active and passive. London: Pitman Publishing Limited.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Gabriel Bozomitu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozomitu, R.G. A New Linearized CCII-Based Fully Differential CMOS Transconductor Used for \(\hbox {G}_\mathrm{m}\)-C Active Filters Implementation. Wireless Pers Commun 74, 615–637 (2014). https://doi.org/10.1007/s11277-013-1310-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1310-x

Keywords

Navigation