Skip to main content
Log in

Wideband HAP-MIMO Channels: A 3-D Modeling and Simulation Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High-altitude platforms (HAPs) are considered as an alternative technology to provide future generation broadband wireless communications services. This paper proposes a three-dimensional (3-D) geometry-based reference model for wideband HAP multiple-input–multiple-output (MIMO) channels. The statistical properties of the channel are analytically studied in terms of the elevation angle of the platform, the antenna arrays configuration, and the angular, the Doppler and the delay spread. Specifically, the space-time-frequency correlation function (STFCF), the space-Doppler power spectrum, and the power space-delay spectrum are derived for a 3-D non-isotropic scattering environment. Finally, a sum-of-sinusoids statistical simulation model for wideband HAP-MIMO channels is proposed. The results show that the simulation model accurately and efficiently reproduces the STFCF of the reference model. The proposed models provide a convenient framework for the characterization, analysis, test, and design of wideband HAP-MIMO communications systems with line-of-sight and non-line-of-sight links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The Doppler spectrum obtained from the Aulin’s 3-D model is constant for \(f_{\max } \cos \beta _{\max } \le \left| \nu \right| \le f_{\max } ,\) where \(f_{\max } \) and \(\beta _{\max } \) are the maximum Doppler frequency and the maximum elevation angle of the scattered waves, respectively [28, 30].

  2. The Doppler spectrum obtained from the Clarke’s 2-D model becomes infinite at the maximum Doppler frequency [33].

References

  1. Aragón-Zavala, A., Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2008). High-altitude platforms for wireless communications. New York: Wiley.

    Book  Google Scholar 

  2. Karapantazis, S., & Pavlidou, F. N. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Surveys & Tutorials, 7(1), 2–31. First Qtr.

    Google Scholar 

  3. Bria, A., Flament, M., Gessler, F., Queseth, O., Stridh, R., & Unbehaun, M., et al. (2001). 4th Generation wireless infrastructures—scenarios and research challenges. IEEE Personal Communications—Special Edition.

  4. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  5. Arapoglou, P.-D., Michailidis, E. T., Panagopoulos, A. D., Kanatas, A. G., & Prieto-Cerdeira, R. (2011). The land mobile earth-space channel: SISO to MIMO modeling from L- to Ka-Bands. IEEE Vehicular Technology Magazine, Special Issue on Trends in Mobile Radio Channels: Modeling, Analysis, and Simulation, 6(2), 44–53.

    Article  Google Scholar 

  6. Bello, P. A. (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 11, 360–393.

    Article  Google Scholar 

  7. Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2004). A statistical switched broadband channel model for HAPS links. In Proceedings IEEE wireless communications and networking conference (WCNC) 2004. Atlanta.

  8. Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2004). Channel model based on semi-Markovian processes, an approach for HAPS systems. In Proceedings XIV international conference on electronics, communications, and computers (CONIELECOMP) 2004 (pp. 52–56). Veracruz, Mexico.

  9. Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2002). Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE Journal on Selected Areas in Communications, 20(3), 641–647.

    Article  Google Scholar 

  10. Latinovic, Z., Abdi, A., Bar-Ness, Y., (2003). A wideband space-time model for MIMO mobile fading channels. In Proceedings IEEE wireless communications and networking conference (WCNC) 2003 (pp. 338–342). New Orleans.

  11. Latinovic, Z., Abdi, A., & Bar-Ness, Y., (2004). On the utility of the circular ring model for wideband MIMO channels. In Proceedings IEEE 60th vehicular technology Conference (VTC Fall) 2004, vol. 1 (pp. 96–100). Los Angeles.

  12. Yuanyuan, M., & Pätzold, M. (2008). A wideband one-ring MIMO channel model under non-isotropic scattering conditions. In Proceedings IEEE vehicular technology conference (VTC Spring) (pp. 424–429). Singapore.

  13. Zajić, A. G., & Stüber, G. L. (2009). Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8, 1260–1275.

    Article  Google Scholar 

  14. Michailidis, E. T., & Kanatas, A. G. (2010). Three dimensional HAP-MIMO channels: Modeling and analysis of space-time correlation. IEEE Transactions on Vehicular Technology, 59(5), 2232–2242.

    Article  Google Scholar 

  15. Yamada, Y., Ebine, Y., & Nakajima, N. (1987). Base station/vehicular antenna design techniques employed in high capacity land mobile communications system. Review of the Electrical Communication Laboratories, 35(2), 115–121.

    Google Scholar 

  16. Kuchar, A., Rossi, J. P., & Bonek, E. (2000). Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation, 48(2), 137–146.

    Article  Google Scholar 

  17. Axiotis, D. I., Theologou, M. E., & Sykas, E. D. (2004). The effect of platform instability on the system level performance of HAPS UMTS. IEEE Communications Letters, 8(2), 111–113.

    Article  Google Scholar 

  18. Döttling, M., Jahn, A., Kunisch, J., & Buonomo, S. (1998). A versatile propagation channel simulator for land mobile satellite applications. In Proceedings 48th IEEE vehicular technology conference (VTC) 1998 (pp. 213–217). Ottawa.

  19. Stüber, G. L. (2001). Principles of mobile communication (2nd ed.). Dordrecht: Kluwer.

    Google Scholar 

  20. Fleury, B. H. (2000). First- and second-order characterization of direction dispertion and space selectivity in the radio channel. IEEE Transactions on Information Theory, 46, 2027–2044.

    Article  MATH  Google Scholar 

  21. Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20(3), 550–560.

    Article  Google Scholar 

  22. Abdi, A., Barger, J. A., & Kaveh, M. (2002). A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Transactions on Vehicular Technology, 51(3), 425–434.

    Article  Google Scholar 

  23. Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2002). A Space-time model for mobile radio channel with hyperbolically distributed scatterers. IEEE Antennas and Wireless Propagation Letters, 1, 211–214.

    Article  Google Scholar 

  24. Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2006). A geometrical-based microcell mobile radio channel model. Wireless Networks, 12(5), 653–664.

    Article  Google Scholar 

  25. Vázquez-Castro, M. A., Perez-Fontan, F., & Saunders, S. R. (2002). Shadowing correlation assessment and modeling for satellite diversity in urban environments. International Journal of Satellite Communications, 20(2), 151–166.

    Article  Google Scholar 

  26. Tzaras, C., Evans, B. G., & Saunders, S. R. (1998). Physical-statistical analysis of land mobile-satellite channel. Electronics Letters, 34(13), 1355–1357.

    Article  Google Scholar 

  27. Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series and products. In: A. Jeffrey (Ed.) (5th ed.). New York: Academic Press.

  28. Aulin, T. (1979). A modified model for the fading signal at a mobile radio channel. IEEE Transactions on Vehicular Technology, 28(3), 182–203.

    Article  Google Scholar 

  29. Vatalaro, F., & Forcella, A. (1997). Doppler spectrum in mobile-to-mobile communications in the presence of three-dimensional multipath scattering. IEEE Transactions on Vehicular Technology, 46(1), 213–219.

    Article  Google Scholar 

  30. Qu, S., & Yeap, T. (1999). A three-dimensional scattering model for fading channels in land mobile environment. IEEE Transactions on Vehicular Technology, 48(3), 765–781.

    Article  Google Scholar 

  31. Kasparis, C., King, P. R., & Evans, B. G. (2007). Doppler spectrum of the multipath fading channel in mobile satellite systems with directional terminal antennas. IET Communications, 1(6), 1089–1094.

    Article  Google Scholar 

  32. Rappaport, T. S. (2002). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  33. Clarke, R. H. (1968). A statistical theory of mobile-radio reception. Bell Systems Technical Journal, 47, 957–1000.

    Article  Google Scholar 

  34. Rice, S. O. (1944). Mathematical analysis of random noise. Bell Systems Technical Journal, 23, 282–332.

    Article  MATH  MathSciNet  Google Scholar 

  35. Pätzold, M., Killat, U., Laue, F., & Li, Y. (1998). On the properties of deterministic simulation models for mobile fading channels. IEEE Transactions on Vehicular Technology, 47(1), 254–269.

    Article  Google Scholar 

  36. Michailidis, E. T., & Kanatas, A. G. (2012). Statistical simulation modeling of 3-D HAP-MIMO channels. Wireless Personal Communications, 65(4), 833–841.

    Google Scholar 

  37. Patel, C. S., Stuber, G. L., & Pratt, T. G. (2005). Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Transactions on Communications, 53(6), 1017–1026.

    Article  Google Scholar 

  38. Mardia, K. V., & Jupp, P. E. (1999). Directional statistics. New York: Wiley.

    Book  Google Scholar 

Download references

Acknowledgments

This work has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program THALES MIMOSA (MIS: 380041). Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Kanatas.

Appendices

Appendix 1: The SPDS of the NLoS Component

The SDPS of the NLoS component is obtained by calculating the FT of the STCF of the NLoS component in (27)–(30)

$$\begin{aligned} S_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\nu } \right) =\mathfrak I _{\Delta t} \left\{ {R_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\Delta t,\Delta f=0} \right) } \right\} . \end{aligned}$$
(58)

Considering that \(\Delta f=0,\) the Bessel function \(I_0 \left( {\sqrt{w_2^2 +w_3^2 }} \right) \) of (27) can be written as

$$\begin{aligned} I_0 \left( {\sqrt{w_2^2 +w_3^2 }} \right) \mathop =\limits _{\Delta f=0} J_0 \left[ {s_1 \sqrt{\left( {\Delta t+s_2 } \right) ^{2}+s_3^2 }} \right] , \end{aligned}$$
(59)

where

$$\begin{aligned} s_1&= 2\pi f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] , \nonumber \\ s_2&= \frac{q_1 +q_2 -q_3 }{f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }, \nonumber \\ s_3&= \frac{q_4 +q_5 -q_6 }{f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }, \nonumber \\ q_1&= \frac{\left( {q-p} \right) \delta _T \sin \theta _T R_S \sin \gamma _R }{\lambda D\cos \beta _T }, \nonumber \\ q_2&= \frac{\left( {m-l} \right) \delta _R \cos \psi _R \cos \left( {\theta _R -\gamma _R } \right) \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }{\lambda }, \nonumber \\ q_3&= \frac{jk\cos \left( {\mu -\gamma _R } \right) }{2\pi }, \nonumber \\ q_4&= \frac{\left( {q-p} \right) \delta _T \sin \theta _T R_S \cos \gamma _R }{\lambda D\cos \beta _T }, \nonumber \\ q_5&= \frac{\left( {m-l} \right) \delta _R \cos \psi _R \sin \left( {\theta _R +\gamma _R } \right) \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }{\lambda }, \nonumber \\ q_6&= \frac{jk\sin \left( {\mu +\gamma _R } \right) }{2\pi }. \end{aligned}$$
(60)

Using (59) and (60), (58) becomes

$$\begin{aligned}&S_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,v} \right) \nonumber \\&\quad =\int \limits _{H_{S,\min } }^{H_{S,\max } } {\int \limits _{R_{S,\min } }^{R_{S,\max } } {A\int \limits _{-\infty }^\infty {e^{-j2\pi \Delta t\left( {v-f_{T,\max } \cos \gamma _T } \right) }} } } J_0 \left[ {s_1 \sqrt{\left( {\Delta t+s_2 } \right) ^{2}+s_3^2 }} \right] d\Delta tdR_S dH_S ,\nonumber \\ \end{aligned}$$
(61)

where

$$\begin{aligned} A&= \frac{e^{j2\pi \left( {\frac{\left( {q-p} \right) \delta _T \cos \theta _T }{\lambda \cos \beta _T }+\frac{\left( {m-l} \right) \delta _R \sin \psi _R \sin \left[ {\arctan \left( {H_S /R_S } \right) } \right] }{\lambda }} \right) }e^{\left[ {-\frac{1}{2\sigma ^{2}}\hbox {ln}^{2}\left( {\frac{H_S }{H_{S,\mathrm{mean}} }} \right) } \right] }}{H_S \cosh ^{2}\left( {aR_S } \right) \sigma \sqrt{2\pi }I_0 \left( k \right) \sqrt{\left( {K_{pl} +1} \right) \left( {K_{qm} +1} \right) }} \nonumber \\&\times \frac{a}{\left[ {F_{H_S } \left( {H_{S,\max } } \right) -F_{H_S } \left( {H_{S,\min } } \right) } \right] \left[ {\tanh \left( {aR_{S,\max } } \right) -\tanh \left( {aR_{S,\min } } \right) } \right] }. \end{aligned}$$
(62)

It is well known that \(e^{\pm jx}=\cos x\pm j\sin x,\) the integral of the product of an odd function, i.e., sin \(x\), and an even function, i.e., cos \(x\) and \(J_{0}(x)\), from \(-\infty \) to \(\infty \) is equal to zero, the product of two even functions is an even function, and the integral of an even function from \(-\infty \) to \(\infty \) is twice the integral from 0 to \(\infty \). Under these considerations and using the equality\(\int _0^\infty {J_0 \left( {a\sqrt{x^{2}+z^{2}}} \right) \cos \left( {bx} \right) dx=\cos \left( {z\sqrt{a^{2}-b^{2}}} \right) /\sqrt{a^{2}-b^{2}} } \) [27, eq. 6.677-3], (61) becomes

$$\begin{aligned}&S_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\nu } \right) \nonumber \\&\quad =\int \limits _{H_{S,\min } }^{H_{S,\max } } {\int \limits _{R_{S,\min } }^{R_{S,\max } } {\frac{Ae^{j2\pi s_2 \left( {\nu -f_{T,\max } \cos \gamma _T } \right) }}{\pi f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] \sqrt{1-\left( {\frac{\nu -f_{T,\max } \cos \gamma _T }{f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }} \right) ^{2}}}} } \nonumber \\&\quad \times \cos \left[ {2\pi s_3 f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] \sqrt{1-\left( {\frac{\nu -f_{T,\max } \cos \gamma _T }{f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }} \right) ^{2}}} \right] dR_S dH_S.\nonumber \\ \end{aligned}$$
(63)

The double integral in (61) has to be evaluated numerically, since there is no closed-form solution. One observes that (61) is applicable for the range

$$\begin{aligned}&0\le \left| {\nu -f_{T,\max } \cos \gamma _T } \right| \le f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] \nonumber \\&\qquad \qquad \Rightarrow 0\le \left| {\nu -f_{T,\max } \cos \gamma _T } \right| \le \nu _{\min } , \end{aligned}$$
(64)

where

$$\begin{aligned} \nu _{\min }&= \mathop {\min }\limits _{H_S ,R_S } \left\{ {f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] } \right\} \nonumber \\&= f_{R,\max } \cos \left[ {\arctan \left( {H_{S,\max } /R_{S,\min } } \right) } \right] . \end{aligned}$$
(65)

However, the SDPS should be sketched for the range

$$\begin{aligned} 0\le \left| {\nu -f_{T,\max } \cos \gamma _T } \right| \le \nu _{\max } , \end{aligned}$$
(66)

where

$$\begin{aligned} \nu _{\max }&= \mathop {\max }\limits _{H_S ,R_S } \left\{ {f_{R,\max } \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] } \right\} \nonumber \\&= f_{R,\max } \cos \left[ {\arctan \left( {H_{S,\min } /R_{S,\max } } \right) } \right] . \end{aligned}$$
(67)

Hence, the SDPS of the NLoS component can be written as in (32)–(36).

Appendix 2: The Relative PSDS of the NLoS Component

The relative PSDS of the NLoS component can be obtained by calculating the IFT of the SFCF of the NLoS component in (27)–(30)

$$\begin{aligned} P_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\tau _r } \right) =\mathfrak I _{\Delta f}^{-1} \left\{ {R_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\Delta t=0,\Delta f} \right) } \right\} . \end{aligned}$$
(68)

Considering that \(\Delta t=0,\) the Bessel function \(I_0 \left( {\sqrt{w_2^2 +w_3^2 }} \right) \) of (27) can be written as

$$\begin{aligned} I_0 \left( {\sqrt{w_2^2 +w_3^2 }} \right) \mathop =\limits _{\Delta t=0} J_0 \left[ {2\pi p_1 \sqrt{\left( {\Delta f-p_2 } \right) ^{2}+p_3^2 }} \right] , \end{aligned}$$
(69)

where

$$\begin{aligned} p_1&= \frac{R_S }{c_0 \cos \beta _T }, \nonumber \\ p_2&= \frac{\left( {m-l} \right) \delta _R \cos \theta _R \cos \psi _R c_0 \cos \beta _T \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }{\lambda R_S }-\frac{jkc_0 \cos \mu \cos \beta _T }{2\pi R_S }, \nonumber \\ p_3&= \frac{\left( {q-p} \right) \delta _T \sin \theta _T c_0 }{\lambda D}+\frac{\left( {m-l} \right) \delta _R \sin \theta _R \cos \psi _R c_0 \cos \beta _T \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }{\lambda R_S } \nonumber \\&-\frac{jkc_0 \sin \mu \cos \beta _T }{2\pi R_S }. \end{aligned}$$
(70)

Using (69) and (70), (68) becomes

$$\begin{aligned}&P_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\tau _r } \right) \nonumber \\&\quad =\int \limits _{H_{S,\min } }^{H_{S,\max } } {\int \limits _{R_{S,\min } }^{R_{S,\max } } {A\int \limits _{-\infty }^\infty {e^{j2\pi \Delta f\left( {\tau _r -p_4 } \right) }J_0 \left( {2\pi p_1 \sqrt{\left( {\Delta f-p_2 } \right) ^{2}+p_3^2 }} \right) d\Delta fdR_S dH_S}, } } \end{aligned}$$
(71)

where

$$\begin{aligned} p_4 =\frac{R_S }{c_0 \cos \left[ {\arctan \left( {H_S /R_S } \right) } \right] }. \end{aligned}$$
(72)

Using the equality [27, eq. 6.677-3] and after extensive calculations, the relative PSDS of the NLoS component is derived as follows

$$\begin{aligned}&P_{pl,qm}^{NLoS} \left( {\delta _T ,\delta _R ,\tau _r } \right) \nonumber \\&\quad =\int \limits _{H_{S,\min } }^{H_{S,\max } } {\int \limits _{R_{S,\min } }^{R_{S,\max } } {\frac{Ae^{j2\pi p_2 \left( {\tau _r -p_4 } \right) }\cos \left( {2\pi p_3 \sqrt{p_1^2 -\left( {\tau _r -p_4 } \right) ^{2}}} \right) }{\pi \sqrt{p_1^2 -\left( {\tau _r -p_4 } \right) ^{2}}}dR _S dH_S } }. \end{aligned}$$
(73)

The double integral in (73) has to be evaluated numerically, since there is no closed-form solution. One observes that (73) is applicable for the range

$$\begin{aligned}&\left| {\tau _r -p_4 } \right| \le p_1 \nonumber \\&\quad \Rightarrow p_4 -p_1 \le \tau _r \le p_4 +p_1 \nonumber \\&\quad \Rightarrow \tau _1 \le \tau _r \le \tau _2, \end{aligned}$$
(74)

where

$$\begin{aligned} \tau _1&= \mathop {\max }\limits _{H_S ,R_S } \left\{ {p_4 -p_1 } \right\} \nonumber \\&= \frac{\sqrt{R_{S,\min }^2 +H_{S,\max }^2 }}{c_0 }-\frac{R_{S,\min } }{c_0 \cos \beta _T }, \end{aligned}$$
(75)
$$\begin{aligned} \tau _2&= \mathop {\min }\limits _{H_S ,R_S } \left\{ {p_4 +p_1 } \right\} \nonumber \\&= \frac{\sqrt{R_{S,\min }^2 +H_{S,\min }^2 }}{c_0 }+\frac{R_{S,\min } }{c_0 \cos \beta _T }. \end{aligned}$$
(76)

However, the relative PSDS should be sketched for the range

$$\begin{aligned} 0\le \tau _r \le \tau _{r,\max } , \end{aligned}$$
(77)

where \(\tau _{r,\max } \approx \tau _{\max } -\tau _{LoS} \) and \(\tau _{LoS} \) and \(\tau _{\max } \) are defined in (8) and (11), respectively. Hence, the relative PSDS of the NLoS component can be written as in (38)–(42).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michailidis, E.T., Kanatas, A.G. Wideband HAP-MIMO Channels: A 3-D Modeling and Simulation Approach. Wireless Pers Commun 74, 639–664 (2014). https://doi.org/10.1007/s11277-013-1311-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1311-9

Keywords

Navigation