Skip to main content
Log in

CSRR Loaded Tunable L-Strip Fed Circular Microstrip Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A tunable L-strip fed circular microstrip antenna on thick substrate with CSRR in the ground plane has been analysed and investigated. The antenna is analysed using cavity model and circuit theoretic approach for initial design and then simulated on IE3D simulation software. The antenna is made tunable with PIN diode which makes it to work in different configurations. Two diodes were used to implement a double annular slot, one annular slot and one split slot and CSRR in the ground plane. While other configurations of diodes provide bandwidth and radiation pattern diversity, CSRR provides size reduction of upto 13.31 % along with high gain directivity and radiation efficiency. A maximum gain of 8 dBi, directivity 8.3 dBi has been achieved in the respective band of operations. The antenna exhibits wideband along with multiband characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. James, J. R., & Hall, P. S. (1989). Hand book of microstrip antennas. London: Peter Peregrinus.

    Google Scholar 

  2. Demiao, Y., Jianming, C., & Mingjzhi, J. (1997). Study on the wide band and high microstrip antenna elements. Journal of Electronics, 14, 68–74.

    Google Scholar 

  3. Luk, K. M., Mak, C. L., Chow, Y. L., & Lee, K. F. (1998). Broadband microstrip antenna. Electronics Letters, 34, 1442–1443.

    Article  Google Scholar 

  4. Herscovici, N. (1998). A wide band single layer patch antenna. IEEE Transactions on Antennas and Propagation, 46, 471–473.

    Article  Google Scholar 

  5. Guo, Y. X., Luk, K. M., & Lee, K. F. (2001). Regular circular a compact semicircular patch antennas with a T-probe feeding. Microwave and Optical Technology Letters, 31, 68–71.

    Article  Google Scholar 

  6. Pues, H. F., & Van De Capelle, A. R. (1989). An impedance matching technique for increasing the bandwidth of microstrip antenna. IEEE Transactions on Antennas and Propagation, 37, 1345–1354.

    Article  Google Scholar 

  7. Kumar, G., & Gupta, K. C. (1984). Broad band microstrip antenna using additional resonator gap coupling to the radiating edges. IEEE Transactions on Antennas and Propagation, 32, 1375–1379.

    Article  Google Scholar 

  8. Song, Q., & Zhang, X. X. (1995). A study on wideband gap coupled microstrip antenna array. IEEE Transactions on Antennas and Propagation, 43, 313–317.

    Article  Google Scholar 

  9. Pandey, G. P., Kanaujia, B. K., Gautam, A. K., & Gupta, S. K. (2012). Ultra-wideband L-strip proximity coupled slot loaded circular microstrip antenna for modern communication systems. Wireless Personal Communications. doi:10.1007/s11277-012-0684-5.

  10. Pandey, G. P., Kanaujia, B. K., Gupta, S. K., & De, A. (2012). Analysis and design of frequency agile stacked circular microstrip patch using extended cavity model for wireless systems. International Journal of Microwave and Optical Technology, 7, 268–277.

    Google Scholar 

  11. Pandey, G. P., Kanaujia, B. K., & Gupta, S. K. (2009). Double MOS loaded circular microstrip antenna for frequency agile. In IEEE international conference on applied electromagnetic conference.

  12. Pandey, G. P., Kanaujia, B. K., Gupta, S. K., & Jain, S. (2011). Analysis of tunnel diode loaded H-shaped microstrip antenna. International Journal of Radio Frequency Identification Technology and Applications, 3, 244–259.

    Article  Google Scholar 

  13. García-García, J., Martín, F., Baena, J. D., Marques, R., & Jelinek, L. (2005). On the resonances and polarizabilities of split rings resonators. Journal of Applied Physics, 98, 1–9.

    Google Scholar 

  14. Marqués, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparative analysis of edge and broadside couple split ring resonators for metamaterial design: theory and experiment. IEEE Transactions on Antennas and Propagation, 51, 2572–2581.

    Article  Google Scholar 

  15. Baena, J. D., Bonache, J., Martín, F., Sillero, R. M., Falcone, F., & Lopetegi, T. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transaction on Microwave Theory and Techniques, 53, 1451–1461.

    Article  Google Scholar 

  16. Cheng, X., Senior, D. E., Kim, C., & Yoon, Y.-K. (2011). A compact omnidirectional self packaged patch antenna with complementary split ring resonator loading for wireless endoscopy applications. IEEE Transactions on Antennas and Wireless Propagation Letters, 10, 1532–1535.

    Article  Google Scholar 

  17. Huffman, R. K. (1987). Handbook of microwave integrated circuits. Boston: Artech House.

    Google Scholar 

  18. Edward, T. C. (1983). Foundation for microstrip circuit design. New York: Wiley.

    Google Scholar 

  19. Long, S. A., Shen, L. C., Walton, M. D., & Allerding, M. R. (1978). Impedance of a circular disc printed antenna. Electronics Letters, 14, 684–686.

    Article  Google Scholar 

  20. Abboud, F., Damiano, J. P., & Papiernik, A. (1990). A new model for calculating the input impedance of coax-fed circular microstrip antennas with and without air gaps. IEEE Transaction on Antenna and Propagation, 38, 1882–1885.

    Article  Google Scholar 

  21. Guha, D. (2001). Resonant frequency of circular microstrip antennas with and without air gaps. IEEE Transaction on Antenna and Propagation, 49, 55–59.

    Article  Google Scholar 

  22. Duran-Sindreu, M., Naquui, J., Paredes, F., Bonache, F., & Martin, F. (2012). Electrically small resonators for planar metamaterial, microwave circuit and antenna design: A comparative analysis. Applied Science, 2, 375–395.

    Article  Google Scholar 

  23. Ricardo, M., Martin, F., & Sorolla, M. (2007). Metamaterials with negative parameters theory design and microwave application. New York: Wiley.

    Google Scholar 

  24. Bahl, I., & Bhartia, P. (1988). Microwave solid state circuit design. New York: Wiley.

    Google Scholar 

  25. Zealand’s IE3D v. 14 California.

  26. Garg, R., Bhartia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip antenna design handbook. Boston: Artech House.

    Google Scholar 

Download references

Acknowledgments

This research was supported by Department of Science and Technology (Vigyan Aur Prodhyogiki Vibhag) government of India under SERC Scheme project sanction order No SR/S3/EECE/0117/ 2010(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod K. Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, G.P., Kanaujia, B.K., Gupta, S.K. et al. CSRR Loaded Tunable L-Strip Fed Circular Microstrip Antenna. Wireless Pers Commun 74, 717–730 (2014). https://doi.org/10.1007/s11277-013-1317-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1317-3

Keywords

Navigation