Skip to main content
Log in

On the Capacity of Cluster-Based Cooperative MIMO Cellular System with Universal or Fractional Frequency Reuse

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The information-theoretic capacity for the cluster-based multicell cooperative processing (MCP) network with inter-cluster interference is investigated in this paper. An upper bound for the ergodic capacity is derived by the QR decomposition of the channel matrix, which is concisely expressed and close to the results from numerical simulations. Capacity results for the universal frequency reuse (UFR) network show that the cluster-based MCP system has great advantages over the non-cooperated system, and the capacity gain depends mainly on the size of the cooperative cluster, the radius of the cell and the path loss exponent (PLE). However, the cluster-based UFR system is still interference limited, whose capacity declines sharply due to the inter-cluster interference. Therefore, a cluster-based fractional frequency reuse (FFR) network is proposed to improve the system capacity, simulation results show that the cluster-based FFR system can outperform the UFR system, especially for the cases of small radius of cell or small PLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Papadogiannis, A., Bang, H., Gesbert, D., & Hardouin, E. (2011). Efficient selective feedback design for multicell cooperative networks. IEEE Transactions on Vehicular Technology, 60(1), 196–205.

    Article  Google Scholar 

  2. Gesbert, D., Hanly, S., Huang, H., Shitz, S., Simeone, O., & Yu, W. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.

    Article  Google Scholar 

  3. Shamai, S., & Zaidel, B. (2001). Enhancing the cellular downlink capacity via co-processing at the transmitting end. In Proceedings of IEEE vehicular technology conference (Vol. 3, pp. 1745–1749).

  4. Huang, H., & Venkatesan, S. (2004). Asymptotic downlink capacity of coordinated cellular network. In Proceedings of IEEE Asilomar conference on signals, systems, and computers (Vol. 1, pp. 850–855).

  5. Karakayali, M., Foschini, G. J., & Valenzuela, R. A. (2006). Network coordination for spectrally efficient communications in cellular systems. IEEE Wireless Communications Magazine, 13(4), 56–61.

    Article  Google Scholar 

  6. Tamaki, T., Seong, K., & Cioffi, J. M. (2007). Downlink MIMO systems using cooperation among base stations in a slow fading channel. In Proceedings of IEEE international conference communications (ICC) (pp. 4728–4733).

  7. Kaviani, S., & Krzymien, W. A. (2008). Sum rate maximization of MIMO broadcast channels with coordination of base stations. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1079–1084).

  8. Armada, A., Fernandez, M., & Corvaja, R. (2009). Waterfilling schemes for zero-forcing coordinated base station transmission. In Proceedings of IEEE global telecommunications conference (Globecom) (pp. 1–5).

  9. Hardjawana, W., Vucetic, B., & Li, Y. (2009). Multi-user cooperative base station systems with joint precoding and beamforming. IEEE Journal of Selected Topics Signal Processing, 3(6), 1079–1093.

    Article  Google Scholar 

  10. Dahrouj, H., & Yu, W. (2009). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.

    Article  Google Scholar 

  11. Wyner, A. D. (1994). Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Transactions on Information Theory, 40(6), 1713–1727.

    Article  MATH  MathSciNet  Google Scholar 

  12. Somekh, O., Poor, H. V., & Shamai, S. (2009). Local base station cooperation via finite-capacity links for the uplink of linear cellular networks. IEEE Transactions on Information Theory, 55(1), 190–204.

    Article  MathSciNet  Google Scholar 

  13. Chatzinotas, S., Imran, M., & Tzaras, C. (2008). On the capacity of variable density cellular systems under multicell decoding. IEEE Communications Letters, 12(7), 496–498.

    Article  Google Scholar 

  14. Chatzinotas, S., Imran, M., & Hoshyar, R. (2009). On the multicell processing capacity of the cellular MIMO uplink channel in correlated Rayleigh fading environment. IEEE Transactions on Wireless Communications, 8(7), 3704–3715.

    Article  Google Scholar 

  15. Venkatesan, S. (2007). Coordinating base stations for greater uplink spectral efficiency in a cellular network. In Proceedings of IEEE international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1–5).

  16. Boccardi, F., & Huang, H. (2007). Limited downlink network coordination in cellular networks In Proceedings of IEEE international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1–5).

  17. Ping, L., Wang, P., Wang, H., & Lin, X. (2008). On cellular capacity with base station cooperation. In Proceedings IEEE global telecommunications conference (Globecom) (pp. 1–5).

  18. Zhang, J., Chen, R., Andrews, J. G., Ghosh, A., & Heath, R. W, Jr. (2009). Networked MIMO with clustered linear precoding. IEEE Transactions on Wireless Communications, 8(4), 1910–1921.

    Article  Google Scholar 

  19. Papadogiannis, A., Gesbert, D., & Hardouin, E. (2008). A dynamic clustering approach in wireless networks with multi-cell cooperative processing. In Proceedings of IEEE international conference on communications (ICC) (pp. 4033–4037).

  20. Kaviani, S., & Krzymien, W. A. (2010). Multicell scheduling in network MIMO. In Proceedings of IEEE global telecommunications conference (Globecom) (pp. 1–5).

  21. Piao, D., Wang, Z., & Yang, Z. (2010). Capacity study of virtual MIMO uplink OFDMA cellular system with cochannel interference. In Proceedings of IEEE vehicular technology conference (VTC) (pp. 1–4).

  22. Blum, R. S. (2003). MIMO capacity with interference. IEEE Journal of Selected Areas in Communications, 21(5), 793–801.

    Article  Google Scholar 

  23. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  24. Wubben, D., Bohnke, R., Rinas, J., Kuhn, V., & Kanimeyer, K. D. (2001). Efficient algorithm for decoding layered space-time codes. Electronics Letters, 37(22), 1348–1350.

    Article  Google Scholar 

  25. Ross, S. M. (1997). Introduction to probability models (6th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  26. Fu, W., Tao, Z., Zhang, J., & Agrawal, D. P. (2010). Clustering based fractional frequency reuse and fair resource allocation in multi-cell networks. In Proceedings of IEEE international conference on communications (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Piao.

Additional information

Part of the results in this paper was presented at IEEE VTC2010-Fall, Sep. 2010, Ottawa, Canada.

Appendix A

Appendix A

1.1 Derivation for (11)

Rewrite \(\mathbf{H}_X \) as \(\mathbf{H}_X =\left[ {A_1 ,A_2 ,\ldots ,A_N } \right] \), we can construct \(N\) mutually orthogonal of norm 1 vectors \(Q_{1},{\ldots },Q_{N}\) from \(A_{1},{\ldots },A_{N}\) by applying the Gram–Schmidt algorithm.

Let the normalized result of \(A_{1}\) equal to \(Q_{1}\), then

$$\begin{aligned}&\displaystyle r_{11} =\left\| {A_1 } \right\| =\left[ {\left| {m_{11} p_{11} } \right| ^{2}+\left| {m_{21} p_{21} } \right| ^{2}+\ldots +\left| {m_{N1} p_{N1} } \right| ^{2}} \right] ^{1/2}\end{aligned}$$
(29)
$$\begin{aligned}&\displaystyle Q_1 =A_1 /r_{11} \end{aligned}$$
(30)

Subtract the component parallel to \(A_{1}\) from \(A_{2}\), and then normalize it,

$$\begin{aligned}&\displaystyle r_{12} =Q_1 ^\mathrm{H}A_2\end{aligned}$$
(31)
$$\begin{aligned}&\displaystyle r_{22}=\left\| {A_2 -Q_1 r_{12} } \right\| =\left\| {A_2 -Q_1 Q_1 ^\mathrm{H}A_2 } \right\| =\left\| {A_2 (\mathbf{E}-Q_1 Q_1 ^\mathrm{H})} \right\| \le \left\| {A_2 } \right\| C_2\end{aligned}$$
(32)
$$\begin{aligned}&\displaystyle Q_2=(A_2 -Q_1 r_{12} )/r_{22} \end{aligned}$$
(33)

Similarly,

$$\begin{aligned} r_{33}&= \left\| {A_3 -Q_1 r_{13} -Q_2 r_{23} } \right\| =\left\| {A_3 -Q_1 Q_1 ^\mathrm{H}A_3 -Q_2 Q_2 ^\mathrm{H}A_3 } \right\| \nonumber \\&= \left\| {A_3 (\mathbf{E}-Q_1 Q_1 ^\mathrm{H}-Q_2 Q_2 ^\mathrm{H})} \right\| \le \left\| {A_3 } \right\| C_3 \end{aligned}$$
(34)

By analogy, for \(r_{ii}, 1\le i\le N\)

$$\begin{aligned} r_{ii} =\left\| {A_i -\sum _{j=1}^{i-1} {Q_j r_{ji} } } \right\|&= \left\| {A_i -\sum _{j=1}^{i-1} {Q_j Q_j ^{\mathrm{H}}A_i } } \right\| =\left\| {A_i (\mathbf{E}-\sum _{j=1}^{i-1} {Q_j Q_j ^{\mathrm{H}})} } \right\| \nonumber \\&\qquad \le \left\| {A_i } \right\| C_i\end{aligned}$$
(35)
$$\begin{aligned} \hbox {In which}\, C_i&= \left\| {\mathbf{E}-\sum _{j=1}^{i-1} {Q_j Q_j ^{\mathrm{H}}} } \right\| ,\;2\le i\le N \end{aligned}$$
(36)

When \(N=7,\;\left[ C_1 ,C_2 ,\ldots , C_7 \right] = \left[ 1.0, 2.4495, 2.2361, 2.0, 1.7321, 1.4142, 1.0 \right] \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, D. On the Capacity of Cluster-Based Cooperative MIMO Cellular System with Universal or Fractional Frequency Reuse. Wireless Pers Commun 74, 891–908 (2014). https://doi.org/10.1007/s11277-013-1329-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1329-z

Keywords

Navigation