Skip to main content
Log in

Switched-Diversity Approach for Cognitive Scheduling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article investigates the scheduling of secondary users in a spectrum-sharing cognitive environment under the primary user’s outage probability constraint. A switched-diversity combining approach to schedule the secondary users is explored. Specifically, switch-and-examine, switch-and-stay, selection-combining, and post-selection scheduling algorithms are investigated. Secondary users’ average performance measures are derived for the scheduling algorithms and compared against those of a single-user cognitive system. Results of this work illustrate the trade-off between the complexity of a scheduling algorithm and its average performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Federal Communications Commission (2002). Spectrum policy task force report. ET Docket No. 02-135.

  2. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

  3. Li, D. (2010). Performance analysis of uplink cognitive cellular networks with opportunistic scheduling. IEEE Communications Letters, 14, 827–829.

    Article  Google Scholar 

  4. Farraj, A. K., & Miller, S. L. (2013). Scheduling in a spectrum-sharing cognitive environment under outage probability constraint. Wireless Personal Communications, 70, 785–805.

    Article  Google Scholar 

  5. Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transactions on Wireless Communications, 8, 102–106.

    Article  Google Scholar 

  6. Fan, L., & Lei, X. (2011). A comment on “Performance Analysis of Uplink Cognitive Cellular Networks with Opportunistic Scheduling”. IEEE Communications Letters, 15, 1–1.

    Article  MathSciNet  Google Scholar 

  7. Goldsmith, A. (2005). Wireless Communications (1st ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  8. Yang, H.-C., & Alouini, M.-S. (2003). Performance analysis of multibranch switched diversity systems. IEEE Transactions on Communications, 51, 782–794.

    Article  Google Scholar 

  9. Holter, B., Alouini, M.-S., Øien, G. E., & Yang, H.-C. (2004). Multiuser switched diversity transmission. IEEE Vehicular Technology Conference, 3, 2038–2043.

    Google Scholar 

  10. Sklar, B. (1988). Digital communications: Fundamentals and applications (1st ed.). Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  11. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory (1st ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  12. Ko, Y.-C., Alouini, M.-S., & Simon, M. K. (2000). Analysis and optimization of switched diversity systems. IEEE Transactions on Vehicular Technology, 49, 1813–1831.

    Article  Google Scholar 

  13. Miller, S. L., & Childers, D. G. (2004). Probability and random processes: With applications to signal processing and communications (1st ed.). Amsterdam: Elsevier Academic.

    Google Scholar 

  14. Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. National Bureau of Standards - Applied Mathematics Series 55 - Tenth Printing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah K. Farraj.

Appendices

Appendix 1: Derivation of Equation (7)

For \(b > 0\) and \(\mathrm{Q}{(x)} = \frac{1}{\sqrt{2 \pi }} \int _{x}^{\infty }{\exp {(-\frac{1}{2}y^2)}\,\mathrm{d}y}, A = \int \limits _{0}^{\infty } {\mathrm{Q}{(\sqrt{2 x})}\, \frac{b}{(x+b)^2} \,\mathrm{d}x}\) can be expressed as

$$\begin{aligned} A&= \int \limits _{0}^{\infty } {\int \limits _{\sqrt{2 x}}^{\infty }{\frac{1}{\sqrt{2 \pi }} \exp {(-\frac{1}{2}y^2)}\,\frac{b}{(x+b)^2} \,\mathrm{d}y} \,\mathrm{d}x} \\&= \frac{b}{\sqrt{2 \pi }} \int \limits _{0}^{\infty }{\exp {(-\frac{1}{2}y^2)} \int \limits _{0}^{\frac{1}{2}y^2}{\frac{1}{(x+b)^2} \,\mathrm{d}x} \,\mathrm{d}y} \\&= \frac{b}{\sqrt{2 \pi }} \int \limits _{0}^{\infty }{\exp {(-\frac{1}{2}y^2)} \left( \frac{1}{b}-\frac{1}{b + \frac{1}{2}y^2} \right) \,\mathrm{d}y}\\&= \frac{1}{2} - \frac{b}{\sqrt{2 \pi }} \int \limits _{0}^{\infty }{ \frac{\exp {(-\frac{1}{2}y^2)}}{b + \frac{1}{2}y^2}\,\mathrm{d}y}\\&\stackrel{(i)}{=} \frac{1}{2} - \frac{b}{\sqrt{\pi }} \int \limits _{0}^{\infty }{ \frac{\exp {(- t^2)}}{b + t^2}\,\mathrm{d}t} \\&\stackrel{(ii)}{=} \frac{1}{2} - \frac{b}{\sqrt{\pi }}\, \left( \frac{\pi }{2 \sqrt{b}} \,\exp {(b)}\, \mathrm{{erfc}}{(\sqrt{ b})}\right) \\&= \frac{1}{2} - \sqrt{\pi b}\, \exp {(b)}\, \mathrm{Q}{(\sqrt{2 b})}\,\cdot \end{aligned}$$

where \((i)\) is found by using \(t^2 = \frac{1}{2}y^2\) and \((ii)\) is found from [14, Equation 7.4.11].

Appendix 2: Derivation of Equation (12)

For \(a \ge 0\) and \(b > 0, A = \int _{a}^{\infty } {\log _2{(1 + x)} \frac{b}{(x+b)^2} \,\mathrm{d}x}\) can be found for \(b = 1\) as

$$\begin{aligned} A&= \int \limits _{a}^{\infty } {\log _2{(1 + x)} \frac{1}{(x + 1)^2} \,\mathrm{d}x} \\&= \int \limits _{a+1}^{\infty } {\log _2{(y)} \frac{1}{y^2} \,\mathrm{d}y} \\&= -\frac{\log _2{(y)} + \log _2{(e)}}{y}\left. \right| _{a+1}^{\infty } \\&= \frac{\log _2{(e)} + \log _2{(a + 1)}}{a + 1}\,\cdot \\ \end{aligned}$$

when \(b \ne 1\), the integration is found as follows

$$\begin{aligned} A&= \int \limits _{a}^{\infty } {\log _2{(1 + x)} \frac{b}{(x + b)^2} \,\mathrm{d}x} \\&= \int \limits _{a+1}^{\infty } {\log _2{(y)} \frac{b}{(y + b - 1)^2} \,\mathrm{d}y} \\&= \frac{b}{b - 1} \frac{y \log _2{(y)} - (y + b - 1)\log _2{(y + b - 1)}}{y + b - 1}\left. \right| _{a+1}^{\infty } \\&= \frac{b}{b - 1} \frac{(a+b) \log _2{(a+b)} - (a+1) \log _2{(a+1)}}{a+b}\,\cdot \end{aligned}$$

Appendix 3: Derivation of Equation (29)

For \(b > 0, A = \int \nolimits _{0}^{\infty } {\mathrm{Q}{(\sqrt{2 x})}\, \frac{x^{N-1}}{(x+b)^{N+1}} \,\mathrm{d}x}\) can be expressed as

$$\begin{aligned} A&= \int \limits _{0}^{\infty } {\int \limits _{\sqrt{2 x}}^{\infty }{\frac{1}{\sqrt{2 \pi }} \exp {(-\frac{1}{2}y^2)}\,\frac{x^{N-1}}{(x+b)^{N+1}} \,\mathrm{d}y} \,\mathrm{d}x} \\&= \frac{1}{\sqrt{2 \pi }} \int \limits _{0}^{\infty }{\exp {(-\frac{1}{2}y^2)} \int \limits _{0}^{\frac{1}{2}y^2}{\frac{x^{N-1}}{(x+b)^{N+1}} \,\mathrm{d}x} \,\mathrm{d}y} \\&= \frac{1}{\sqrt{2 \pi }} \int \limits _{0}^{\infty }{\exp {(-\frac{1}{2}y^2)} \frac{1}{b N} \left( \frac{y^2/2}{y^2/2+b}\right) ^{N}\,\mathrm{d}y}\\&\stackrel{(i)}{=} \frac{1}{2 b N} \frac{1}{\sqrt{\pi }} \int \limits _{0}^{\infty }{e^{-t} \frac{t^{N-1/2}}{(t + b)^N}\,\mathrm{d}t} \\&= \frac{{{}_1\mathrm{F}_1}(N , \frac{1}{2}, b) - 2 \sqrt{b}\, \frac{\Gamma (N + \frac{1}{2})}{\Gamma (N)} \, {{}_1\mathrm{F}_1}(N + \frac{1}{2}, \frac{3}{2}, b)}{2 b N} , \end{aligned}$$

where \((i)\) is found by using \(t = \frac{1}{2}y^2, \Gamma (\cdot )\) is the Gamma function, and \({{}_1\mathrm{F}_1}(\cdot , \cdot , \cdot )\) is the Kummer confluent Hypergeometric function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farraj, A.K. Switched-Diversity Approach for Cognitive Scheduling. Wireless Pers Commun 74, 933–952 (2014). https://doi.org/10.1007/s11277-013-1331-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1331-5

Keywords

Navigation