Skip to main content

Advertisement

Log in

A Hybrid Spectrum Sensing Method for Cognitive Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Existing spectrum sensing methods for cognitive radio do not consider the secondary network’s characteristics to obtain the frequency of spectrum sensing, i.e., the sensing period would be identical for secondary networks that have different traffic characteristics. In this paper, a hybrid sensing algorithm is proposed that finds the optimal sensing period based on both primary and secondary networks’ properties. A continuous-time Markov chain system is used to accurately model the spectrum occupancy, and a novel method is proposed that adaptively varies its parameters to avoid unnecessary sensing tasks, while guaranteeing the priority of the primary network. We conduct simulation work to evaluate the performance of the proposed method. It is shown that the proposed technique outperforms the non-hybrid approach with respect to sensing efficiency and energy consumption. A cognitive sensor network is also considered based on IEEE 802.15.4/ZigBee radios, and it is shown that significant energy savings can be achieved by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The small variation in \(\frac{\sum _{i=1}^{K}T_O(i)}{T_{sim}}\) for the non-hybrid method is due to the fact that the network parameters are stochastically selected through the simulation.

References

  1. FCC. (2002). Spectrum policy task force report, Tech. Rep. 02-135.

  2. Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  3. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. PhD. Diss., Royal Inst. Technol. (KTH), Stockholm, Sweden.

  4. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  5. Wang, J., Ghosh, M., & Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74–81.

    Article  Google Scholar 

  6. Liang, Z., Feng, S., Zhao, D., & Shen, X. S. (2011). Delay performance analysis for supporting real-time traffic in a cognitive radio sensor network. IEEE Transactions on Wireless Communications, 10(1), 325–335.

    Article  Google Scholar 

  7. Zahmati, A. S., Hussain, S., Fernando, X., & Grami, A. (2009). Cognitive wireless sensor networks: Emerging topics and recent challenges. In Proceedings of the IEEE TIC-STH (pp. 593–596).

  8. Chen, Y., Woo, W. L., & Wang, C. (2011). Channel modeling of information transmission over cognitive interrogator-sensor networks. IEEE Transactions on Vehicular Technology, 60(1), 2–15.

    Article  Google Scholar 

  9. Zahmati, A. S., Fernando, X., & Kojori, H. (2011). Emerging wireless applications in aerospace: Benefits, challenges, and existing methods. In Proceedings of the 4th annual caneus, fly by wireless workshop (FBW) (pp. 1–4).

  10. Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors Journal, 11(3), 565–573.

    Article  Google Scholar 

  11. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Elsevier Computer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  12. Xing, Y., Mathur, C. N., Haleem, M. A., Chandramouli, R., & Subbalakshmi, K. P. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.

    Article  Google Scholar 

  13. Zahmati, A. S., Fernando, X., & Grami, A. (2012). A continuous-time Markov chain model and analysis for cognitive radio networks. International Journal on Communication Networks and Distributed Systems, 8(3/4), 195–212.

    Article  Google Scholar 

  14. Zahmati, A. S., Fernando, X., & Grami, A. (2010). Steady-state Markov chain analysis for heterogeneous cognitive radio networks. In Proceedings of the IEEE Sarnoff symposium (pp. 1–5).

  15. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  16. Wang, B., Ji, Z., Liu, K. J. R., & Clancy, T. C. (2009). Primary-prioritized Markov approach for dynamic spectrum allocation dynamic spectrum allocation. IEEE Transactions on Wireless Communications, 8(4), 1854–1865.

    Article  Google Scholar 

  17. Liang, Y., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  18. Ganesan, G., & Li, Y. (2005). Agility improvement through cooperative diversity in cognitive radio. In Proceedings of the IEEE global telecommunications conference (Globecom) (vol. 5, pp. 2505–2509).

  19. Paweczak, P., Janssen, G. J., & Prasad, R. V. (2006). WLC10-4: Performance measures of dynamic spectrum access networks. In Proceedings of the IEEE global telecommunications conference (Globecom) (pp. 1–6).

  20. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.

    Article  Google Scholar 

  21. Won-Yeol, L., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  22. Digham, F. F., Alouini, M. S., & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings of the IEEE ICC 2003 (pp. 3575–3579).

  23. Tang, H. (2005). Some physical layer issues of wide-band cognitive radio system. In Proceedings of the IEEE DySPAN 2005 (pp. 151–159).

  24. Shankar, S. (2005). Spectrum agile radios: utilization and sensing architecture. In Proceedings of the IEEE DySPAN (pp. 160–169).

  25. Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-Layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.

    Article  MathSciNet  Google Scholar 

  26. Shin, K. G., Kim, H., Min, A. W., & Kumar, A. (2010). Cognitive radios for dynamic spectrum access: from concept to reality. IEEE Wireless Communications, 17(6), 64–74.

    Article  Google Scholar 

  27. Cheng, Y.-C., & Hwang, C. (2006). Use of the Lambert W function for time-domain analysis of feedback fractional delay systems. IEE Proceedings of Control Theory & Applications, 153(2), 167–174.

    Article  Google Scholar 

  28. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs), IEEE 802.15.4 Standard (2006).

  29. Heinzelman, W., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application- specific protocol architecture for wireless microsensor. IEEE Transactions on Wireless Communications, 1, 660–670.

    Google Scholar 

  30. Maleki, S., Pandharipande, A., & Leus, G. (2009). Energy efficient distributed spectrum sensing with convex optimization. In Proceedings of the 3rd international workshop computing advances in multi-sensor adaptive processing (pp. 396–399).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sepasi Zahmati.

Appendix: Derivation of \(T_I\)

Appendix: Derivation of \(T_I\)

The Lambert W-function is used to derive \(T_I\) from Eq. (15). Firstly, Eq. (15) is written as \(\zeta = \frac{1-e^ {-\beta T_I}}{\beta T_I}\), where \(\zeta \) is the minimum acceptable \(AOR\). Assume \(x=\beta T_I\), then

$$\begin{aligned} \zeta x = 1 - e^{-x}. \end{aligned}$$
(19)

Using the substitution \((t = x - \frac{1}{\zeta })\) yields to

$$\begin{aligned} te^t = \frac{-1}{\zeta e^{\frac{1}{\zeta }}}. \end{aligned}$$
(20)

Secondly, we use the following property of Lambert W-function [27]

$$\begin{aligned} Y = Xe^x \Leftrightarrow X = W(Y). \end{aligned}$$
(21)

Therefore, \(t = \mathbf W \left( \frac{-1}{\zeta e^{\frac{1}{\zeta }}}\right) \), or \(T_I\) is given by

$$\begin{aligned} T_I = \frac{1}{\beta }\left[ \mathbf W \left( \frac{-1}{\zeta e^{\frac{1}{\zeta }}}\right) +\frac{1}{\zeta }\right] . \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepasi Zahmati, A., Fernando, X. & Grami, A. A Hybrid Spectrum Sensing Method for Cognitive Sensor Networks. Wireless Pers Commun 74, 953–968 (2014). https://doi.org/10.1007/s11277-013-1332-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1332-4

Keywords

Navigation