Skip to main content
Log in

Joint Source and Relay Precoder Design in Amplify-and-Forward MIMO Relay Systems with Direct Link

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the precoder design problem in a two-hop amplify-and-forward multiple-input-multiple-output relay system. Many previous works on this problem are based on the minimum mean-square error criterion and the presence of a direct link between the source and the destination is ignored. In this paper, we propose a new method for joint source and relay precoder design based on maximizing the mutual information between the source and the destination, taking both the relay link and the direct link into account. In contrast to previous works, which consider the transmit power constraints of the source and the relay independently, we assume a total power constraint on the sum transmit power of the source and the relay instead to study also the optimal power distribution over the two nodes. A constrained optimization problem with respect to the unknown source precoder matrix and relay precoder matrix is then formulated, which is nonconvex and very difficult to solve directly. We propose a structural constraint on the precoders by analyzing the structure of the problem and referring to related works. With the proposed precoders’ structure and by applying the Hadamard’s inequality, the original problem is simplified from a matrix-valued problem to a scalar-valued one. However, the new scalar-valued problem is still nonconvex and we manage to convert it into two subproblems and solve it in an iterative fashion. By using the Karash–Kuhn–Tucker (KKT) conditions, we give out the closed-form solutions to the subprobelms. Simulation results demonstrate that the proposed design method converges rapidly and significantly outperforms the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pabst, R., et al. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine, 42(9), 80–89.

    Article  Google Scholar 

  2. Wang, B., Zhang, J., & Host-Madsen, A. (2005). On the capacity of MIMO relay channels. IEEE Transactions on Information Theory, 51(1), 29–43.

    Article  MathSciNet  Google Scholar 

  3. Bolcskei, H., Nabar, R. U., Oyman, O., & Paulraj, A. J. (2006). Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 5(6), 1433–1444.

    Article  Google Scholar 

  4. Yuksel, M., & Erkip, E. (2007). Multi-antenna cooperative wireless systems: A diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393.

    Article  MathSciNet  Google Scholar 

  5. Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.

    Article  Google Scholar 

  6. Kramar, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  Google Scholar 

  7. Tang, X., & Hua, Y. (2007). Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6(4), 1398–1407.

    Article  Google Scholar 

  8. Munoz-Medina, O., Vidal, J., & Agustin, A. (2007). Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing, 55(6), 2593–2604.

    Article  MathSciNet  Google Scholar 

  9. Guan, W., & Luo, H. (2008). Joint MMSE transceiver design in non-regenerative MIMO relay systems. IEEE Communication Letters, 12(7), 517–519.

    Article  Google Scholar 

  10. Song, C., Lee, K. J., & Lee, I. (2010). MMSE based transceiver designs in closed-loop non-regenerative MIMO relaying systems. IEEE Transactions on Wireless Communications, 9(7), 2310–2319.

    Article  Google Scholar 

  11. Tseng, F., Chang, M., & Wu, W. (2011). Joint Tomlinson-Harashima source and linear relay precoder design in amplify-and-forward MIMO relay systems via MMSE criterion. IEEE Transactions on Vehicular Technology, 60(4), 1687–1698.

    Article  Google Scholar 

  12. Mo, R., & Chew, Y. (2009). MMSE-based joint source and relay precoding design for amplify-and-forward MIMO relay networks. IEEE Transactions on Wireless Communications, 8(9), 4668–4676.

    Article  Google Scholar 

  13. Marshall, A. W., & Olkin, I. (2009). Inequalities: Theory of majorization and its applications (2nd ed.). New York: Springer.

    Google Scholar 

  14. Palomar, D. P., Cioffi, J. M., & Lagunas, M. A. (2003). Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization. IEEE Transactions on Signal Processing, 51(9), 2381–2401.

    Article  Google Scholar 

  15. Palomar, D. P., & Jiang, Y. (2006). MIMO transceiver design via majorization theory. USA: Now Publishers.

    Google Scholar 

  16. Rong, Y., Tang, X., & Hua, Y. (2009). A unified framework for optimizing linear nonregenerative multicarrier MIMO relay communication systems. IEEE Transactions on Signal Processing, 57(12), 4837–4851.

    Article  MathSciNet  Google Scholar 

  17. Fu, Y., Yang, L., et al. (2011). Optimum linear design of two-hop MIMO relay networks with QoS requirements. IEEE Transactions on Signal Processing, 59(5), 2257–2269.

    Article  MathSciNet  Google Scholar 

  18. Jing, Y., & Jafarkhani, H. (2009). Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory, 55(6), 2499–2517.

    Article  MathSciNet  Google Scholar 

  19. Mo, R., & Chew, Y. (2009). Precoder design for non-regenerative MIMO relay systems. IEEE Transactions on Wireless Communications, 8(10), 5041–5049.

    Article  Google Scholar 

  20. Tseng, F., & Wu, W. (2010). Linear MMSE transceiver design in amplify-and-forward MIMO relay systems. IEEE Transactions on Vehicular Technology, 59(2), 754–765.

    Article  MathSciNet  Google Scholar 

  21. Rong, Y., & Gao, F. (2009). Optimal beamforming for non-regenerative MIMO relays with direct link. IEEE Communication Letters, 13(12), 926–928.

    Article  Google Scholar 

  22. Rong, Y. (2010). Optimal joint source and relay beamforming for MIMO relays with direct link. IEEE Communication Letters, 14(5), 390–392.

    Article  Google Scholar 

  23. Paredes, J. M., & Gershman, A. B. (2011). Relay network beamforming and power control using maximization of mutual information. IEEE Transactions on Wireless Communications, 10(12), 4356–4365.

    Article  Google Scholar 

  24. Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD conference. Taipei, Taiwan.

  25. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. NY, USA: Cambridge University Press New York.

    Book  MATH  Google Scholar 

  26. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (Nos.\(61172077\) & \(61223001\)), National 863 High Technology Development Project (No. \(2013AA013601\)), Key Special Project of National Science and Technology (No. \(2013ZX03003006\)), and Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. \(2013A04\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Wang.

Appendices

Appendix A: Proof of (10)

$$\begin{aligned} \mathbf{{I}}({\mathbf{{y}}_D},{} \,\mathbf{{s}})&= \frac{1}{2}{\log _2}\left| \mathbf{{I}} + \mathbf{{H}}{\mathbf{{R}}_S}{\mathbf{{H}}^H}\mathbf{{R}}_Z^{ - 1}\right| \nonumber \\&= \frac{1}{2}{\log _2}\left| \mathbf{{I}} + \sigma _S^2\mathbf{{H}}{\mathbf{{H}}^H}\mathbf{{R}}_Z^{ - 1}\right| \nonumber \\&= \frac{1}{2}{\log _2}\left| \mathbf{{I}} + \sigma _S^2\left[ {\begin{array}{cc} {{\mathbf{{H}}_{SD}}{\mathbf{{F}}_S}} \\ {{\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{H}}_{SR}}{\mathbf{{F}}_S}} \\ \end{array}} \right] \left[ {\begin{array}{cc} {{{({\mathbf{{H}}_{SD}}{\mathbf{{F}}_S})}^H}} &{} {{{({\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{H}}_{SR}}{\mathbf{{F}}_S})}^H}} \\ \end{array}} \right] \right. \nonumber \\&\left. \times {\left[ {\begin{array}{cc} {{\mathbf{{R}}_{Z0}}} &{} \mathbf{{0}} \\ \mathbf{{0}} &{} {{\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{R}}_{Z1}}\mathbf{{F}}_R^H\mathbf{{H}}_{RD}^H + {\mathbf{{R}}_{Z2}}} \\ \end{array}} \right] ^{ - 1}}\right| \nonumber \\&= \frac{1}{2}{\log _2}\left| \mathbf{{I}} + \sigma _S^2\left[ {\begin{array}{cc} {{{({\mathbf{{H}}_{SD}}{\mathbf{{F}}_S})}^H}} &{} {{{({\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{H}}_{SR}}{\mathbf{{F}}_S})}^H}} \\ \end{array}} \right] \right. \nonumber \\&\left. \times \left[ {\begin{array}{cc} {\mathbf{{R}}_{Z0}^{ - 1}} &{} \mathbf{{0}} \\ \mathbf{{0}} &{} {{{({\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{R}}_{Z1}}\mathbf{{F}}_R^H\mathbf{{H}}_{RD}^H + {\mathbf{{R}}_{Z2}})}^{ - 1}}} \\ \end{array}} \right] \left[ {\begin{array}{cc} {{\mathbf{{H}}_{SD}}{\mathbf{{F}}_S}} \\ {{\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{H}}_{SR}}{\mathbf{{F}}_S}} \\ \end{array}} \right] \right| \nonumber \\&= \frac{1}{2}{\log _2}\left| \mathbf{{I}} + \frac{{\sigma _S^2}}{{\sigma _{Z0}^2}}\mathbf{{F}}_S^H\mathbf{{H}}_{SD}^H{\mathbf{{H}}_{SD}}{\mathbf{{F}}_S}\right. \nonumber \\&\left. + \frac{{\sigma _S^2}}{{\sigma _{Z2}^2}}\mathbf{{F}}_S^H\mathbf{{H}}_{SR}^H\mathbf{{F}}_R^H\mathbf{{H}}_{RD}^H{\left( \frac{{\sigma _{Z1}^2}}{{\sigma _{Z2}^2}}{\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}\mathbf{{F}}_R^H\mathbf{{H}}_{RD}^H + \mathbf{{I}}\right) ^{ - 1}}{\mathbf{{H}}_{RD}}{\mathbf{{F}}_R}{\mathbf{{H}}_{SR}}{\mathbf{{F}}_S}\right| \qquad \end{aligned}$$
(46)

Appendix B: The Algorithm for Determining \(\mu \) in (44)

To determine \(\mu \) efficiently, we first give out an upper bound and a lower bound of \(\mu \) denoted as \({\mu _{U0}}\) and \({\mu _{L0}}\), respectively. Substituting (44) into (45), we have

$$\begin{aligned} {\sum \limits _{i = 1}^4 {\frac{1}{{\varLambda _{2i}^2}}\left( {\mu \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} - 1} \right) } ^ + } = P/2 \end{aligned}$$
(47)

Since

$$\begin{aligned} {\sum \limits _{i = 1}^4 {\frac{1}{{\varLambda _{2i}^2}}\left( {\mu \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} - 1} \right) } ^ + }&\ge \sum \limits _{i = 1}^4 {\frac{1}{{\varLambda _{2i}^2}}\left( {\mu \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} - 1} \right) }\nonumber \\&\ge \sum \limits _{i = 1}^4 {\frac{1}{{\varLambda _{2i}^2}}} \left[ {\mu \mathop {\min }\limits _i \left( \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} \right) - 1} \right] \end{aligned}$$
(48)

let

$$\begin{aligned} \Bigg [\mu \underbrace{\mathop {\min }\limits _i \left( \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} \right) }_{: = a} - 1\Bigg ]\underbrace{\sum \limits _{i = 1}^4 {\frac{1}{{\varLambda _{2i}^2}}} }_{: = b} = P/2 \end{aligned}$$
(49)

we have

$$\begin{aligned} {\mu _{U0}} = \left( \frac{P}{{2b}} + 1\right) /a \end{aligned}$$
(50)

On the other hand, in order to satisfy (47), at least we should have

$$\begin{aligned} \mu \mathop {\max }\limits _i \left( \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} \right) - 1 > 0 \end{aligned}$$
(51)

so we can choose

$$\begin{aligned} {\mu _{L0}} = 1/\mathop {\max }\limits _i \left( \sqrt{\frac{{\varLambda _{1i}^2\varLambda _{2i}^2}}{{\varLambda _{1i}^2 + 1}}} \right) \end{aligned}$$
(52)

With this two initial value, we have the following algorithm to determine \(\mu \), where \(\epsilon \) is a predetermined convergence precision.

figure e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Chen, M., Wu, X. et al. Joint Source and Relay Precoder Design in Amplify-and-Forward MIMO Relay Systems with Direct Link. Wireless Pers Commun 75, 511–530 (2014). https://doi.org/10.1007/s11277-013-1374-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1374-7

Keywords

Navigation