Skip to main content
Log in

Performance Analysis and Improvement Content Discovery Protocols Over Vehicular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently P2P networks and theirs applications have become increasingly popular. On the other hand, considering ever increasing industrial and scholarly popularity of Vehicular Ad-hoc Networks (VANETs), implementation P2P network over VANET has attracted attentions recently. One of the most important applications in P2P networks is content discovery. This paper presents an evaluation framework which evaluates challenges in VANET and their impact on performance of content discovery protocols including structured or unstructured ones. This evaluation is based on simulation and mathematical modeling. For mathematical modeling, Generalized Random Graph has been used. Results of evaluation clarified a higher performance on unstructured protocol and also impact of movement pattern and environmental characteristic of VANET on performance on content discovery protocols. Furthermore, based on evaluation results, some modifications in the manner of comprising overlay network were presented. This modification emphasizes matching of overlay networks and underlay networks and also using traffic flow of vehicles in comprising overlay links. Positive impact of this modification has been shown by simulation and mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  1. Toor, Y., Mühlethaler, P., Laouiti, A., & Fortelle, A. D. L. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.

    Google Scholar 

  2. Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Journal of Computer Network, 55(2), 457–469.

    Article  Google Scholar 

  3. Yousefi, S., Fathy, M., & Mousavi, S. (2006). Vehicular ad hoc networks (VANETS) challenges and perspectives. In 6th IEEE international conference on ITS telecommunications proceeding.

  4. Androutsellis-Theotokis, S., & Spinellis, D. (2004). A survey of peer-to-peer content distribution technologies. ACM Computing Surveys, 36(4), 335–371.

    Article  Google Scholar 

  5. Meshkova, E., Riihijärvi, J., Petrova, M., & Mähönen, P. (2008). A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Computer Networks, 52(11), 2097–2128.

    Article  Google Scholar 

  6. Ciraci, S., Körpeoglu, I., & Ulusoy, Ö. (2009). Reducing query overhead through route learning in unstructured peer-to-peer network. Network and Computer Applications, 32(3), 550–567.

    Article  Google Scholar 

  7. Rostami, H., & Habibi, J. (2007). Topology awareness of P2P overlay networks. Concurrency and Computation-Practice and Experience, 19(7), 999–1021.

    Article  Google Scholar 

  8. Chandra, J., Shaw, S. K., & Ganguly, N. (2010). HPC5: An efficient topology generation mechanism for Gnutella networks. Computer Networks, 54(9), 1440–1459.

    Article  MATH  Google Scholar 

  9. Rodero-Merino, L., Anta, A. F., López, L., & Cholvi, V. (2010). Performance of random walks in one-hop replication networks. Computer Networks, 54(5), 781–796.

    Article  MATH  Google Scholar 

  10. Shah, N., Qiani, D., & Wang, R. (2012). MANET adaptive structured P2P overlay. Peer-to-Peer Networking and Applications, 5(2), 143–160.

    Article  Google Scholar 

  11. Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118

    Google Scholar 

  12. Wu, B., & Kshemkalyani, A. D. (2008). Analysis models for unguided search in unstructured P2P networks. Journal of Ad Hoc and Ubiquitous Computing, 3(4), 255–263.

    Article  Google Scholar 

  13. Tang, X., Xu, J., & Lee, W. C. (2008). Analysis of TTL-based consistency in unstructured peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems, 19(12), 1683–1694.

    Article  Google Scholar 

  14. Kant, K. (2003). An analytic model for peer to peer file sharing networks. In Proceedings of the international communications conference.

  15. Adamic, L. A., Lukose, R. M., Puniyani, A. R., & Huberman, B. A. (2001). Search in power-law networks. Physical Review E, 64, 46135–46143.

    Article  Google Scholar 

  16. Gaeta, R., Balbo, G., Bruell, S., Gribaudo, M., & Sereno, M. (2005). A simple analytical framework to analyze search strategies in large-scale peer-to-peer networks. Performance Evaluation, 62(1), 1–16.

    Article  Google Scholar 

  17. Fathy, M., Raahemifar, K., Babaei, H., Romoozi, M., & Berangi, R. (2012). Impact of mobility on performance of P2P content discovery protocols over MANET. Procedia CS, 10, 642–649.

    Google Scholar 

  18. Babaei, H., Fathy, M., Berangi, R., & Romoozi, M. (2012). The impact of mobility models on the performance of P2P content discovery protocols over mobile ad hoc networks. Journal of Peer-to-Peer Networking and Apps. doi:10.1007/s12083-012-0184-0.

  19. Stoica, I., Morris, R., Karger, D., & Frans Kaashoek, M., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications, SIGCOMM. Computer Communication Review, 31(4), 149–160

  20. Liu, C. L., Wang, C. Y., & Wei, H. Y. (2010). Cross-layer mobile Chord P2P protocol design for VANET. Journal of Ad Hoc Ubiquitous Computer, 6(3), 150–163.

    Article  MathSciNet  Google Scholar 

  21. Zhu, Y., & Hu, Y. (2007). Efficient semantic search on DHT overlays. Journal of Parallel Distribution Computer, 67(5), 604–616.

    Article  MATH  MathSciNet  Google Scholar 

  22. Dutta, N. (2010). A peer to peer based information sharing scheme in vehicular ad hoc networks. In Proceedings of the 2010 eleventh international conference on mobile data management (MDM ’10), IEEE Computer Society (pp. 309–310).

  23. Doulamis, N. D., Karamolegkos, P. N., Doulamis, A., & Nikolakopoulos, I. (2009). Exploiting semantic proximities for content search over p2p networks. Journal of Computer Communication, 32(5), 814–827.

    Article  Google Scholar 

  24. da Hora, D. N., Macedo, D. F., Oliveira, L. B., Siqueira, I. G., Loureiro, A. A. F., Nogueira, J. M., et al. (2009). Enhancing peer-to-peer content discovery techniques over mobile ad hoc networks. Journal of Computer Communication, 32, 1445–1459.

    Article  Google Scholar 

  25. Das, S., Nandan, A., & Pau, G. (2004). SPAWN: A swarming protocol for vehicular ad-hoc wireless networks. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (VANET ’04) (pp. 93–94). New York, NY, USA: ACM.

  26. Thompson, N., & Crepaldi, R. (2010). Locus: A Location-based data overlay for disruption-tolerant networks. In Proceedings of the 5th ACM workshop on challenged networks (CHANTS ’10) (pp. 47–54). ACM, New York, NY, USA.

  27. Yang, B., & Mareboyana, M. (2012). Similarity search in sensor networks using semantic-based caching. Journal of Network Computer Application, 35(2), 577–583.

    Article  Google Scholar 

  28. Abuelela, M., & Olariu, S. (2007). ZIPPER: A zero-infrastructure peer-to-peer system for VANET. In Proceedings of the 3rd ACM workshop on wireless multimedia networking and performance modeling(WMuNeP ’07) (pp. 2–8). New York, NY, USA: ACM.

  29. Ghandeharizade, S., Kapadia, S., & Krishnamachari, B. (2004). PAVAN: a policy framework for content availability in vehicular ad-hoc networks. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks(VANET ’04) (pp. 57–65). New York, NY, USA: ACM.

  30. Pozar, D. M. (1998). Microwave engineering (2nd ed.). NY: Wiley.

    Google Scholar 

  31. Held, G. (2004). Focus on the Cisco Aironet 350 wireless access point. Journal of Network Manager, 14(1), 3–7.

    Google Scholar 

  32. Romoozi, M., Babaei, H., & Fathi, M. (2009). A cluster-based mobility model for intelligent nodes in ad hoc networks. ICCSA, LNCS, 5592, 804–817.

    Google Scholar 

  33. Harri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). VanetMobiSim: Generating realistic mobility patterns for VANETs. In Proceedings of the 3rd international workshop on vehicular ad hoc networks (VANET ’06) (pp. 96–97). New York, NY, USA: ACM.

  34. Harri, J. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE communications Surveys and Tutorials, 11(4), 19–41

    Google Scholar 

  35. Oliveira, R., Luísa, E., Furtadoa, B. A., Bernardoa, L., Dinisa, R., & Pintoa, B. P. (2012). Improving path duration in high mobility vehicular ad hoc networks. Journal of Ad Hoc Networks, 11(1), 89–103.

    Article  Google Scholar 

  36. Yousefi, S., Altman, E., & Fathy, M. (2008). Analytical model for connectivity in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(6), 3341–3356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Romoozi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romoozi, M., Fathy, M. & Berangi, R. Performance Analysis and Improvement Content Discovery Protocols Over Vehicular Networks. Wireless Pers Commun 75, 857–899 (2014). https://doi.org/10.1007/s11277-013-1395-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1395-2

Keywords

Navigation