Skip to main content
Log in

Triple Band Circular Patch Microstrip Antenna with Superstrate

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel compact triple band slit cut circular patch antenna with superstrate is proposed; slits on the patch provide additional resonances. The superstrate (cover) of dielectric layer provides protection to printed circuit antenna from environmental hazards due to abnormal weather conditions. The slits add two resonances in the resonance of a circular patch to achieve triple band antenna for multi services. The dielectric superstrate or cover above the microstrip patch causes the change in fringing fields between the patch and ground plane. The change in fringing field is accounted to calculate the effective relative permittivity. The effective permittivity is considered to evaluate the changes in resonance frequency due to superstrate. The various parameters of the antenna have been investigated and the antenna is simulated on Ansoft’s HFSS software simulator. A prototype of antenna is fabricated to confirm the return loss by measurement using the Agilent Technologies’ N5230A PNA-L Network Analyzer. The proposed structure with superstrate possess triple band characteristics and provides protection from environmental hazards. The resonating frequencies of the bands are 7.3, 8.7 and 10.3 GHz. The analytical results are found in good agreement with the simulated results obtained by Ansoft’s HFSS and further confirmed by measurement. Antenna is worth for X band operations such as remote sensing, WPAN and military satellite communication and vehicular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nicoloas, G. A., & David, R. J. (1984). Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Transactions on Antennas and Propagation, 32, 807–816.

    Article  Google Scholar 

  2. Rahim, H. A., Malek, M. F. A., Adam, I., Affendi, N. A. M., Saudin, N., Mohamed, L., et al. (2012). In IEEE symposium on wireless technology and applications, Bandung, Indonesia. 978–1-4673-2210-2/12.

  3. Kaya, A., & Yuksel, E. Y. (2007). Investigation of a compensated rectangular microstrip antenna with negative capacitor and negative inductor for bandwidth enhancement. IEEE Transactions on Antennas and Propagation, 55, 1275–1282.

    Article  Google Scholar 

  4. Kanaujia, B. K., & Vishvakarma, B. R. (2004). analysis of gunn integrated annular ring microstrip antenna. IEEE Transactions on Antennas and Propagation, 52, 88–97.

    Article  Google Scholar 

  5. Pandey, G. P., Kanaujia, B. K., Gupta, S. K., & Gautam, A. K. (2013). Ultra—wideband L-strip proximity coupled slot loaded circular microstrip antenna. Wireless Personal Communications, Springer, 70, 139–151.

    Google Scholar 

  6. Pandey, G. P., Kanaujia, B. K., & Gupta, S. K., (2009). Double MOS loaded circular microstrip antenna for frequency agile. In IEEE applied electromagnetic conference Kolkata, 978–1-4244-4819-7/09.

  7. Gupta, S. K., Kanaujia, B. K., & Pandey, G. P. (2012). Double MOS loaded circular microstrip patch antenna with airgap for mobile communication. Wireless Personal Communications, Springer, 71, 987–1002.

    Google Scholar 

  8. Wang, Z., Fang, S., Fu, S., & Lu, S. (2009). Dual band probe—fed stacked patch antenna for GNSS application. IEEE Antenna and Wireless Propagation Letters, 8, 100–103.

    Article  Google Scholar 

  9. Caso, R., Serra, A. A., Pino, M. R., Nepa, P., & Manara, G. (2010). Wideband slot coupled stacked patch array for wireless communications. IEEE Antennas and Wireless Propagation Letters, 9, 986–989.

    Article  Google Scholar 

  10. Shafai, L. (2007). Antenna engineering handbook. University of Manitoba, McGraw-Hill.

  11. Irsadi, M., Chuang, S. L., & Lo, Y. T. (1990). On slot-coupled microstrip antennas and their applications to CP operation. IEEE Transactions on Antennas and Propagation, 38(8), 1224–1230.

    Article  Google Scholar 

  12. Tilanthe, P., & Sharma, P.C. (2009). An ultra broadband stacked patch antenna. In IEEE conference IMPACT-2009, pp. 94–97.

  13. Mahajan, M., Khah, S. K., & Chakravarty, T. (2006). Extended cavity model of stacked circular disc. Progress in Electromagnetics Research, 65, 287–308.

    Article  Google Scholar 

  14. Long, S. A., & Walton, M. D. (1979). A dual-frequency stacked circular-disc antenna. IEEE Transactions on Antennas and Propagation, 27(2), 270–273.

    Article  Google Scholar 

  15. Maci, S., & Gentili, G. B. (1997). Dual-frequency patch antennas. IEEE Antennas and Propagation Magazine, 39(6), 13–30.

    Article  Google Scholar 

  16. Wong, K. L. (2002). Compact and broadband microcstrip antennas. Wiley.

  17. Guha, D., & Siddiqui, J. Y. (2003). Resonant frequency of microstrip antenna covered with dielectric superstarte. IEEE Transactions on Antennas and Propagation, 51, 1649–1652.

    Article  Google Scholar 

  18. Bahl, I. J., & Bhartia, P. (1980). Microstrip antennas. Dedham, MA: Artech House.

    Google Scholar 

  19. Krishna, D. D., Gopikrishna, M., Anandan, C. K., Mohanan, P., & Vasudevan, K. (2008). Compact dual band slot loaded circular microstrip antenna with a superstrate. Progress in Electromagnetics Research, 83, 245–255.

    Article  Google Scholar 

  20. Bird, T. (2009). Definition and misuse of return loss. IEEE Antennas and Propagation Magazine, 51, 166–167.

    Article  Google Scholar 

  21. Ansoft’s HFSS software simulator V 12.0, Pittsburgh, PA.

  22. Lin, C. C., Kuo, L. C., & Chuang, H. R. (2006). A horizontally polarized omnidirectional printed antenna for WLAN applications. IEEE Transactions on Antennas and Propagation, 54, 3551–3556.

    Article  Google Scholar 

  23. Wu, S. J., Kang, C. H., Chen, K. H., & Tarng, J. H. (2010). Study of an ultrawideband monopole antenna with a band-notched open-looped resonator. IEEE Transactions on Antennas and Propagation, 58, 1890–1897.

    Google Scholar 

  24. Nishiyama, E., Aikawa, M., & Sasaki, S. (2008). Polarisation switchable slot-ring array antenna. IET Microwave Antennas Propagation, 2, 236–241.

    Article  Google Scholar 

  25. Nguyen, D. L., Paulson, K. S., & Riley, N. G. (2011). Reduced-size circularly polarised square microstrip antenna for 2.45 GHz RFID applications. IET Microwave Antennas Propagation, 6, 94–99.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Science and Technology (Vigyan Aur Prodhyogiki Vibhag) government of India under SERC Scheme project sanction order No SR/S3/EECE/0117/2010(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.K., Sharma, A., Kanaujia, B.K. et al. Triple Band Circular Patch Microstrip Antenna with Superstrate. Wireless Pers Commun 77, 395–410 (2014). https://doi.org/10.1007/s11277-013-1512-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1512-2

Keywords

Navigation