Skip to main content
Log in

Analytical Analysis of Applying Packet Fragmentation Mechanism on Both Basic and RTS/CTS Access Methods of the IEEE 802.11b DCF Network Under Imperfect Channel and Finite Load Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The mathematical modeling and performance evaluation of the IEEE 802.11 network in all its various extensions (802.11b, 802.11a, 802.11g, 802.11e, 802.11n, etc.) have already been widely explored over the past years. However, the Packet Fragmentation Mechanism (PFM), which is proposed by the IEEE work group to enhance the MAC sub-layer of the IEEE 802.11 standard in an error-prone channel, has been missed in the available literature. Yet, the PFM is the only existing solution to reduce the influence of bit error rate and the length of data packets on the packet error rate, and consequently on the performances of IEEE 802.11 networks. In this paper, we propose a new three-dimensional Markov chain in order to model, for the first time in the literature, the PFM in both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions. Then, we develop mathematical models to derive a variety of performance metrics, such as: the overall throughput, the average packet delay successfully transmitted, the average packet drop time, the delay jitter and the packet delay distribution. Performance analysis of applying PFM on both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions shows original results and leads to new conclusions that could not be intuitively expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lyakhov, A., & Vishnevsky, V. (2005). Comparative study of 802.11 DCF and its modification in the presence of noise. Wireless Networks, 11, 729–740.

    Article  Google Scholar 

  2. IEEE. (1999). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11.

  3. IEEE. (2007). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11.

  4. Alonso-Zarate, J., Crespo, C., Skianis, Ch., Alonso, L., & Verikoukis, Ch. (2012). Distributed point coordination function for IEEE 802.11 wireless ad hoc networks. Ad hoc Networks, 10, 536–551.

    Article  Google Scholar 

  5. IEEE. (2005). Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) enhancements, IEEE Std 802.11e.

  6. Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1), 159–171.

    Article  Google Scholar 

  7. IEEE. (2009). Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements for higher throughput, IEEE Std 802.11n.

  8. Saif, A., Othman, M., Subramaniam, S., & Abdul-Hamid, N. A. W. (2012). An enhanced A-MSDU frame aggregation scheme for 802.11n wireless networks. Wireless Personal Communications, 66, 683–706.

    Article  Google Scholar 

  9. Giustiniano, D., Malone, D., Leith, D. J., & Papagiannaki, K. (2010). Measuring transmission opportunities in 802.11 links. IEEE/ACM Transactions on Networking, 18(5), 1516–1529.

    Article  Google Scholar 

  10. Jayakrishnan, S. S., & Bhaskar, V. (2012). Performance analysis of MIMO–OFDM in various outdoor fading environments. International Journal of Electronics and Communications, 66, 797–805.

    Article  Google Scholar 

  11. Heereman, F., Joseph, W., Tanghe, E., Plets, D., Verloock, L., & Martens, L. (2012). Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms. International Journal of Electronics and Communications, 66, 561–568.

    Article  Google Scholar 

  12. Al-Mahdi, H., Kalil, M. A., Liers, F., & Mitschele-Thiel, A. (2009). Collision reduction mechanism for masked node problem in ad hoc networks. International Journal of Electronics and Communications, 63, 754–761.

    Article  Google Scholar 

  13. Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in distributed CSMA scheduling algorithms with collisions. IEEE/ACM Transactions on Networking, 19(3), 816–829.

    Article  Google Scholar 

  14. Hung, F. Y., & Marsic, I. (2010). Performance analysis of the IEEE 802.11 DCF in the presence of the hidden stations. Computer Networks, 54, 2674–2687.

    Article  MATH  Google Scholar 

  15. Hadzi-Velkov, Z., & Spasenovski, B. (2002) Capture effect in IEEE 802.11 basic service area under influence of rayleigh fading and near/far effect. In Proceedings of 13th IEEE PMRC (Vol. 1, pp. 172–176).

  16. Yun, J. H., & Seo, S. W. (2007). Novel collision detection scheme and its applications for IEEE 802.11 wireless LANs. Computer Communications, 30, 1350–1366.

    Article  Google Scholar 

  17. Willing, A., Kubisch, M., Hoene, C., & Wolisz, A. (2002). Measurements of a wireless link in an industrial environment using an IEEE 802.11 compliant physical layer. IEEE Transactions on Industrial Electronics, 43(6), 1265–1282.

    Article  Google Scholar 

  18. Li, T., Ni, Q., Malone, D., Leith, D., Xiao, Y., & Turletti, T. (2009). Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.

    Article  Google Scholar 

  19. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 districuted coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  20. Prasad, A. R., Prasad, N. R., Kamerman, A., Moelard, H., & Eikelenboom, A. (2001). Performance evaluation, system design and network deployment of IEEE 802.11. Wireless Personal Communications, 19, 57–79.

    Article  Google Scholar 

  21. Yun, L., Ke-Ping, L., Wei-Liang, Z., & Qian-Bin, C. (2006). A novel random backoff algorithm to enhance the performance of IEEE 802.11 DCF. Wireless Personal Communications, 36, 29–44.

    Article  Google Scholar 

  22. Alizadeh-Shabdiz, F., & Subramaniam, S. (2006). Analytical models for single-hop and multi-hop ad hoc networks. Mobile Networks and Applications, 11, 75–90.

    Article  Google Scholar 

  23. Cheng, S. T., & Wu, M. (2007). Adaptive coordination function for IEEE 802.11 wireless LANs. Wireless Personal Communications, 43, 743–757.

    Article  Google Scholar 

  24. Fan, Z. (2007). Throughput and QoS optimization for EDCA-based IEEE 802.11 WLANs. Wireless Personal Communications, 43, 1279–1290.

    Article  Google Scholar 

  25. Zaki, A. N., & El-Hadidi, M. T. (2008). Performance evaluation of IEEE 802.11-based wireless LANs under finite-load conditions. International Journal of Electronics and Communications, 62, 327–337.

    Article  Google Scholar 

  26. Alsabbagh, H. M., Chen, J., & Xu, Y. (2008). Influence of the limited retransmission on the performance of WLANs using error-prone channel. International Journal of Communications, Networks and System Scienes, 1, 49–54.

    Article  Google Scholar 

  27. Wang, C. Y., & Wei, H. Y. (2009). IEEE 802.11n MAC enhancement and performance evaluation. Mobile Networks and Applications, 14, 760–771.

    Article  Google Scholar 

  28. Mahmood, M. H., Chang, Ch., Jung, D., & Mao, Z. (2010). Throughput behavior of link adaptive 802.11 DCF with MUD capable access node. International Journal of Electronics and Communications, 64, 1031–1041.

    Article  Google Scholar 

  29. Sekiya, H., Tsuchiya, Y., Komuro, N., & Sakata, S. (2011). Analytical expression of maximum throughput for long-frame communications in one-way string wireless multihop networks. Wireless Personal Communications, 60, 29–41.

    Article  Google Scholar 

  30. Zhu, D. B., & Choi, B. D. (2012). Performance analysis of CSMA in an unslotted cognitive radio network with licensed channels and unlicensed channels. Journal on Wireless Communications and Networking, 12, 1–7.

    Google Scholar 

  31. Kim, D. W., Lim, W. S., & Suh, Y. J. (2012). A robust and cooperative MAC protocol for IEEE 802.11a wireless networks. Wireless Personal Communications, 67, 689–705.

    Article  Google Scholar 

  32. Jansang, A., & Phonphoem, A. (2012). A simple analytical model for expected frame waiting time evaluation in IEEE 802.11e HCCA mode. Wireless Personal Communications. doi:10.1007/s11277-012-0670-y.

  33. Hiraguri, T., Nagata, K., Ogawa, T., Ueno, T., Jin’no, K., & Nishimori, K. (2012). Queuing scheme for improved downlink throughput on WLANs. Wireless Personal Communications. doi:10.1007/s11277-012-0741-0.

  34. Salkintzis, A. K., Pavlidou, F. N., Fitzek, F. H. P., & Varma, V. K. (2005). Guest editorial: Special issue on advances on wireless LANs and PANs. Wireless Personal Communications, 34, 1–5.

    Article  Google Scholar 

  35. Chatzimisios, P., Xiao, Y., Tinnirello, I., Granelli, F., & Elmallah, E. S. (2009). Recent advances in IEEE 802.11 WLANs: Protocols, solutions, & future directions. Mobile Networks and Applications, 14, 693–696.

  36. Misra, S., Traore, I., & Song, W. (2011). Editorial: Adaptive communication in wireless networks. Wireless Personal Communications, 56, 353–357.

    Article  Google Scholar 

  37. Senthilkumar, D., & Krishnan, A. (2010). Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing, 7(1), 95–104.

    Article  Google Scholar 

  38. Senthilkumar, D., & Krishnan, A. (2010). Throughput analysis of IEEE 802.11 multirate WLANs with collision aware rate adaptation algorithm. International Journal of Automation and Computing, 7(4), 571–577.

    Article  Google Scholar 

  39. Kumar, P., & Krishnan, A. (2011). Throughput analysis of the IEEE 802.11 distributed coordination function considering erroneous channel and capture effects. International Journal of Automation and Computing, 8(2), 236–243.

    Article  Google Scholar 

  40. Senthilkumar, D., & Krishnan, A. (2012). Enhancement to IEEE 802.11 distributed coordination function to reduce packet retransmissions under imperfect channel conditions. Wireless Personal Communications, 65, 929–953.

    Article  Google Scholar 

  41. Weinmiller, J., Schlager, M., Festag, A., & Wolisz, A. (1997). Performance study of access control in wireless LANs—IEEE 802.11 DFWMAC and ETSI RES 10 Hiperlan. Mobile Networks and Applications, 2, 55–67.

    Article  Google Scholar 

  42. Lindgren, A., Almquist, A., & Schelen, O. (2003). Quality of service schemes for IEEE 802.11 wireless LANs—An evaluation. Mobile Networks and Applications, 8, 223–235.

    Article  Google Scholar 

  43. Borgia, E., Conti, M., & Gregori, E. (2005). IEEE 802.11b ad hoc networks: Performance Measurements. Cluster Computing, 8, 135–145.

    Article  Google Scholar 

  44. Anouar, H., & Bonnet, C. (2007). Optimal constant-window backoff scheme for IEEE 802.11 DCF in single-hop wireless networks under finite load conditions. Wireless Personal Communications, 43, 1583–1602.

    Article  Google Scholar 

  45. Khalaj, A., Yazdani, N., & Rahgozar, M. (2007). Effect of the contention window size on performance and fairness of the IEEE 802.11 standard. Wireless Personal Communications, 43, 1267–1278.

    Article  Google Scholar 

  46. Serrano, P., Banchs, A., & Azcorra, A. (2007). A throughput and delay model for IEEE 802.11e EDCA under non saturation. Wireless Personal Communications, 43, 467–479.

    Article  Google Scholar 

  47. Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., & Chen, H. H. (2009). Performance study of a mobile multi-hop 802.11a/b railway networks using passive measurement. Mobile Networks and Applications, 14, 782–797.

    Article  Google Scholar 

  48. Judd, G., & Steenkiste, P. (2010). Characterizing 802.11 wireless link behavior. Wireless Networks, 16, 167–182.

    Article  Google Scholar 

  49. Choi, N., Seok, Y., Kwon, T., & Choi, Y. (2011). Multicasting multimedia streams in IEEE 802.11 networks: A focus on reliability and rate adaptation. Wireless Networks, 17, 119–131.

    Article  Google Scholar 

  50. Campbell, C. E. A., Loo, K. K. J., Gemikonakli, O., Khan, S., & Singh, D. (2011). Multi-channel distributed coordinated function over single radio in wireless sensor networks. Sensors, 11(1), 964–991.

    Article  Google Scholar 

  51. Campbell, C. E., Loo, K. K., Kurdi, H. A., & Khan, S. (2011). Comparison of IEEE 802.11 and IEEE 802.15. 4 for future green multichannel multi-radio wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 3(1), 96–103.

    Google Scholar 

  52. Castignani, G., Blanc, A., Lampropulos, A., & Monavont, N. (2012). Urban 802.11 community networks for mobile users: Current deployments and prospectives. Mobile Networks and Applications. doi:10.1007/s11036-012-0402-2.

  53. Cardoso, K. V., & De-Rezende, J. F. (2012). Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement. Wireless Networks, 18, 95–112.

    Article  Google Scholar 

  54. Lim, C., Choi, C. H., & Lim, H. (2012). Sequential coordination function for throughput and fairness enhancement of wireless LANs. Wireless Personal Communications, 66, 321–342.

    Article  Google Scholar 

  55. Hajlaoui, N., Jabri, I., & Jemaa, M. B. (2013). Experimental performance evaluation and frame aggregation enhancement in IEEE 802.11 n WLANs. International Journal of Communication Networks and Information Security (IJCNIS), 5(1), 48–58.

    Google Scholar 

  56. Chen, W. T. (2008). An effective medium contention method to improve the performance of IEEE 802.11. Wireless Networks, 14, 769–776.

    Article  Google Scholar 

  57. Fallah, Y. P., El-Housseini, S., & Alnuweiri, H. (2008). A generalized saturation throughput analysis for IEEE 802.11e contention-based MAC. Wireless Personal Communications, 47, 235–245.

    Article  Google Scholar 

  58. Li, Y., Wang, C., Long, K., & Zhao, W. (2008). Modeling channel access delay and Jitter of IEEE 802.11 DCF. Wireless Personal Communications, 47, 417–440.

    Article  Google Scholar 

  59. Pillutla, L. S., & Krishnamurthy, V. (2011). A price based decentralized rate selection in IEEE 802.11 based WLANs. Wireless Personal Communications, 56, 517–534.

    Article  Google Scholar 

  60. Song, W. (2011). Adaptive packetization for conversational video service over IEEE 802.11 WLANs with hidden terminals. Wireless Personal Communications, 56, 491–501.

    Article  Google Scholar 

  61. Feng, K. T., Huang, Y. Z., & Lin, J. S. (2011). Design of MAC-defined aggregation ARQ schemes for IEEE 802.11n networks. Wireless Networks, 17, 685–699.

    Article  Google Scholar 

  62. Pack, S., Kim, K., Kim, W., Song, T., & Min, S. (2012). A cross-layer approach to reduce channel access delay jitter in IEEE 802.11 WLANs. Wireless Personal Communications. doi:10.1007/s11277-012-0639-x.

  63. Yao, Y. C., Wen, J. H., & Weng, C. E. (2012). The performance evaluation of IEEE 802.11e for QoS support in wireless LANs. Wireless Personal Communications. doi:10.1007/s11277-012-0581-y.

  64. Vishnevsky, V. M., & Lyakhov, A. I. (2002). IEEE 802.11 wireless LAN: Saturation throughput analysis with seizing effect consideration. Cluster Computing, 5, 133–144.

    Article  Google Scholar 

  65. Pham, P. P. (2005). Comprehensive analysis of the IEEE 802.11. Mobile Networks and Applications, 10, 691–703.

    Article  Google Scholar 

  66. Szczypiorski, K., & Lubacz, J. (2008). Saturation throughput analysis of IEEE 802.11g (ERP-OFDM) networks. Telecommunication Systems, 38, 45–52.

    Article  Google Scholar 

  67. Bae, Y. H., Lyakhov, A. I., Vishnevsky, V. M., Kim, K. J., & Choi, B. D. (2008). Matrix method to study IEEE 802.11 network. Automation and Remote Control, 69(3), 529–543.

    Article  MATH  Google Scholar 

  68. Lin-Fang, D., Yan-Tai, S., Hai-Ming, C., & Mao-De, M. (2008). Packet delay analysis on IEEE 802.11 DCF under finite load traffic in muti-hop ad hoc networks, science in China Series F. Information Sciences, 51(4), 408–416.

    MathSciNet  Google Scholar 

  69. Peng, X. Y., Jiang, L. T., & Xu, G. Z. (2009). Saturation throughput analysis of RTS/CTS scheme in an error-prone WLAN channel. Journal of Zhejiang University SCIENCE A, 10(12), 1714–1719.

    Article  MATH  Google Scholar 

  70. Raptis, P., Vitsas, V., & Paparrizos, K. (2009). Packet delay metrics for IEEE 802.11 distributed coordination function. Mobile Networks and Applications, 14, 772–781.

    Article  Google Scholar 

  71. Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R., & Thapa, B. (2011). Performance of IEEE 802.11 under Jamming. Mobile Networks and Applications. doi:10.1007/s11036-011-0340-4.

  72. Prakash, G., & Thangaraj, P. (2011). Non-saturation throughput analysis of IEEE 802.11 distributed coordination function. European Journal of Scientific Research, 51(2), 157–167.

    Google Scholar 

  73. Keene, S. M., & Carruthers, J. B. (2012). Collision localization for IEEE 802.11 wireless LANs. Wireless Personal Communications, 63, 45–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Yazid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D. et al. Analytical Analysis of Applying Packet Fragmentation Mechanism on Both Basic and RTS/CTS Access Methods of the IEEE 802.11b DCF Network Under Imperfect Channel and Finite Load Conditions. Wireless Pers Commun 77, 477–506 (2014). https://doi.org/10.1007/s11277-013-1517-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1517-x

Keywords

Navigation