Skip to main content

Advertisement

Log in

Moment Generating Function Based Performance Analysis of Maximal-Ratio Combining Diversity Receivers in the Generalized-K Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we have analyzed the performance of maximal ratio combing (MRC) diversity receiver of the wireless communication systems over the composite fading environment, which is modelled by using the generalized-K distribution. However, this distribution has been considered as a versatile distribution for the precise modelling of a great variety of the short-term fading in conjunction with the long-term fading (shadow fading) channel conditions. In this proposed analysis, we have derived the mathematical expression for the moment generating function (MGF) of the generalized-K fading channel model that is used to evaluate a novel closed-form expression of the average bit error rate for (BER) the binary phase-shift keying /binary frequency-shift keying and average symbol error rate (SER) for the rectangular quadrature amplitude modulation scheme. We have also derived the mathematical expressions for the outage probability as well as the channel capacity for the generalized-K fading channel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  2. Dwivedi, V. K., & Singh, G. (2011). A novel moment generating function based performance analysis over correlated Nakagami-m fading. Journal of Computational Electronics, 10(4), 373–381.

    Article  Google Scholar 

  3. Suzuki, H. (1977). A statistical model for urban radio propagation. IEEE Transactions on Communication, 25(7), 673–680.

    Article  Google Scholar 

  4. Hansen, F., & Meno, F. I. (1977). Mobile fading-Rayleigh and Lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  5. Shankar, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28(4), 233–238.

    Article  Google Scholar 

  6. Abdi, A., & Kaveh, M. (1998). \(K\) distribution: An appropriate substitute for Rayleigh-Lognormal distribution in fading-shadow fading wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  7. Abdi, A., & Kaveh, M. (2000). Comparison of DPSK and MSK bit error rates for \(K\) and Rayleigh-Lognormal fading distributions. IEEE Communications Letters, 4(4), 122–124.

    Article  Google Scholar 

  8. Shankar, P. M. (2006). Performance analysis of diversity combining algorithms in shadowed fading channels. Wireless Personal Communications, 37(1–2), 61–72.

    Google Scholar 

  9. Theofilakos, P., Kanatas, A. G., & Efthymoglou, G. P. (2008). Performance of generalized selection combining receivers in K fading channels. IEEE Communications Letters, 12, 816–818.

    Article  Google Scholar 

  10. Bithas, P. S., Mathiopoulos, P. T., & Kotsopoulos, S. A. (2007). Diversity reception over generalized-K (K\(_{G})\) fading channels. IEEE Transactions on Wireless Communication, 6(12), 4238–4243.

    Article  Google Scholar 

  11. Bithas, P. S., Sagias, N. C., Mathiopoulos, P. T., Karagiannidis, G. K., & Rontogiannis, A. A. (2006). On the performance analysis of digital communications over generalized-\(K\) fading channels. IEEE Communications Letters, 5(10), 353–355.

    Article  Google Scholar 

  12. Laourine, A., Alouini, M.-S., Affes, S., & Stephenne, A. (2008). On the capacity of generalized-K fading channels. IEEE Transactions on Wireless Communications, 7(7), 2441–2445.

    Article  Google Scholar 

  13. Efthymoglou, G. P., Ermolova, N. Y., & Aalo, V. A. (2010). Channel capacity and average error rates in generalized-K fading channels. IET Communications, 4(11), 1364–1372.

    Article  MATH  MathSciNet  Google Scholar 

  14. DiRenzo, M., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Techology, 59, 127–149.

    Article  Google Scholar 

  15. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic.

    MATH  Google Scholar 

  16. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals and series: More special functions. Gordon and Breach Science, vol. 3, translated from the Russian by G. G. Gould.

  17. Dwivedi, V. K., & Singh, G. (2011). Error-rate analysis of the OFDM for correlated Nakagami-m fading channel by using maximal-ratio combining diversity. International Journal of Microwave and Wireless Technology, 3(6), 717–7263.

    Google Scholar 

  18. Simon, M. K., & Alouini, M.-S. (1999). A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications, 47, 1324–1333.

    Article  Google Scholar 

  19. Dwivedi, V. K., & Singh, G. (2012). Marginal moment generating function based analysis of channel capacity over correlated Nakagami-m fading with maximal-ratio combining diversity. Progress in Electromagnetic Research B, 41, 333–356.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Appendices

Appendix: MGF of Generalized-K Fading Channel

Equation (4) can be obtained by substituting the value of \(f_\gamma (\gamma )\) from Eq. (2) into Eq. (3) and the MGF of generalized K-fading channel can be written as:

$$\begin{aligned} M_\gamma (s)=\frac{2\left( { \Xi } \right) ^{{(\alpha +1)}/2} {}{}}{\Gamma (mL)\Gamma (k)}\int \limits _0^\infty {\exp (-s\gamma ){}{}} {}{}(\gamma )^{{(\alpha -1)}/2}K_\beta \left[ {2\sqrt{ \Xi \gamma }} \right] d\gamma \end{aligned}$$
(20)

By putting \(K_\beta \left( {2\sqrt{\Xi \gamma }\cdot } \right) \) as \(\frac{1}{2}G{\small \begin{array}{ll} 2&{} 0 \\ 0&{} 2 \\ \end{array} }\left[ { {\Xi \gamma } \bigg |{\small \begin{array}{l} {\small {\begin{array}{ll} &{} \\ \end{array} }} \\ {\small {\begin{array}{cc} {\beta /2}&{} {{-\beta }/2} \\ \end{array} }} \\ \end{array} }} \right] \) [16, Equation (8.4.23.1)] in Eq. (20), we get:

$$\begin{aligned} M_\gamma (s)=\frac{\left( \Xi \right) ^{(\alpha +1)/2}}{\Gamma (mL)\Gamma (k)}\int \limits _0^\infty {\gamma ^{(\alpha -1)/2}e^{-s\gamma }} G{\begin{array}{ll} 2&{} 0 \\ 0&{} 2 \\ \end{array} }\left[ { {\Xi \gamma } \bigg |{\begin{array}{ll} {{\begin{array}{ll} &{} \\ \end{array} }} \\ {{\begin{array}{cc} {\beta /2}&{} {{-\beta }/2} \\ \end{array} }} \\ \end{array} }} \right] {}{}d\gamma \end{aligned}$$
(21)

By putting \(\int _0^\infty {x^{s-1}} e^{-\sigma {}x}G{\small \begin{array}{ll} m&{} n \\ p&{} q \\ \end{array} }\left[ {\omega {}x\left| {\small {\begin{array}{c} {\left( {a_p } \right) } \\ {\left( {b_q } \right) } \\ \end{array} }} \right. } \right] dx=\sigma ^{-s}G{\small \begin{array}{cc} m&{} {n+1} \\ {p+1}&{} q \\ \end{array} }\left[ { {\frac{\omega }{\sigma } } \bigg |{\small \begin{array}{ll} {\small {\begin{array}{cc} {1-s}&{} {\left( {a_p } \right) } \\ \end{array} }} \\ {\small {\begin{array}{cc} {\left( {b_q } \right) }&{} \\ \end{array} }} \\ \end{array} }} \right] \) form [16, Equation (2.24.3.1)] into Eq. (21) provides equation (4).

Appendix: Average BER for BPSK/BFSK Modulation Scheme

For the proof of Eq. (6), we assume, \(I_1 =\int _0^{\pi /2} {M_\gamma } \left( {\frac{g}{\sin ^{2}\theta }} \right) d\theta \) in Eq. (5). By using Eq. (4), \(I_{1}\) can be expressed as:

$$\begin{aligned} I_1 =\frac{\left( { \Xi } \right) ^{\frac{\alpha +1}{2}}1}{\pi \Gamma (mL)\Gamma (k)}\int \limits _0^{\frac{\pi }{2}} { \left( {\frac{g}{\sin ^{2}\theta }} \right) ^{-\frac{(\alpha +1)}{2}}G{\begin{array}{ll} 2&{} 1 \\ 1&{} 2 \\ \end{array} }\left[ {\left. {\frac{ \Xi \sin ^{2}\theta }{g}} \right| {\begin{array}{cc} {{(1-\alpha )}/2}&{} \\ {\beta /2}&{} {-\beta /2} \\ \end{array} }} \right] } d\theta \end{aligned}$$
(22)

By changing the variable \(t=\sin ^{2}\theta \) and after some mathematical manipulation, Eq. (22) can be expressed as:

$$\begin{aligned} I_1 =\frac{\left( { \Xi /g} \right) ^{\frac{\alpha +1}{2}}}{2\pi \Gamma (mL)\Gamma (k)}\int \limits _0^1 { \left( t \right) ^{\frac{(\alpha )}{2}}\left( {1-t} \right) ^{{-1}/2}G{\begin{array}{l@{\quad }l} 2&{} 1 \\ 1&{} 2 \\ \end{array} }\left[ {\left. {\frac{ \Xi t}{g}} \right| {\begin{array}{cc} {{(1-\alpha )}/2}&{} \\ {\beta /2}&{} {-\beta /2} \\ \end{array} }} \right] } dt \end{aligned}$$
(23)

By using \(\int _0^1 {x^{s-1}} \left( {1-x} \right) ^{t-1}G{\small \begin{array}{ll} m&{} n \\ p&{} q \\ \end{array} }\left[ {\omega {}x\left| {{\small \begin{array}{cc} {\left( {a_p } \right) } \\ {\left( {b_q } \right) } \\ \end{array} }} \right. } \right] dx\!=\!\Gamma (t)G{\small \begin{array}{cc} m&{} {n\!+\!1} \\ {p\!+\!1}&{} {q\!+\!1} \\ \end{array} }\left[ {\omega \left| {{\small \begin{array}{cc} {{\small \begin{array}{cc} {1\!-\!s}&{} {\left( {a_p } \right) } \\ \end{array} }} \\ {{\small \begin{array}{cc} {\left( {b_q } \right) }&{} {1\!-\!s\!-\!t} \\ \end{array} }} \\ \end{array} }} \right. } \right] \) from [16, Equation (2.24.2)], the Eq. (23) can be expressed as:

$$\begin{aligned} I_1 =\frac{ \left( {\Xi /g} \right) ^{\frac{(1+\alpha )}{2}}\sqrt{\pi }}{2 \Gamma (mL)\Gamma (k)}G{\begin{array}{l@{\quad }l} 2&{} 2 \\ 2&{} 3 \\ \end{array} }\left[ {\left. {\frac{ \Xi }{g}} \right| {\begin{array}{c@{\quad }c} {{-{}{}{}\alpha }/2}&{} {{(1-\alpha )}/2} \\ {\beta /2}&{} {{\begin{array}{c@{\quad }c} {-\beta /2}&{} {-{(\alpha +1)}/2} \\ \end{array} }} \\ \end{array} }} \right] \end{aligned}$$
(24)

By using Eqs. (5) and (24), we can obtain Eq. (6).

Appendix: Integration I\(_{3}\)

To derive Eq. (11), we proceed by using [15, Equation (6.643.3)] and Eq. (2), the MGF of the generalized K-fading distribution can be expressed as:

$$\begin{aligned} M_\gamma (s)= \left( {\frac{ \Xi }{s}} \right) ^{\alpha /2}\exp \left( {\frac{\Xi }{2s}} \right) W_{-\alpha /2,\beta /2} \left( {\frac{\Xi }{s}} \right) \end{aligned}$$
(25)

where \(W_{-\mu ,\nu } \left( \cdot \right) \) is the Whittaker function as discussed in [15, Equation (9.220.4)]. From Eq. (10) and (25), the integral \( I_{3}\) can be expressed as:

$$\begin{aligned} I_3 = \int \limits _0^{\frac{\pi }{4}} {\left( {\frac{ \Xi \sin ^{2}\theta }{g_{QAM} }} \right) ^{\alpha /2}\exp \left( {\frac{\Xi \sin ^{2}\theta }{2g_{QAM} }} \right) W_{-\alpha /2,\beta /2} \left( {\frac{\Xi \sin ^{2}\theta }{g_{QAM} }} \right) d\theta } \end{aligned}$$
(26)

By using the transformation \(t = 2 \sin ^{2}\theta \) and after some mathematical manipulation, the Eq. (26) can be written as:

$$\begin{aligned} I_3 \!= \!\frac{1}{2\sqrt{2}} \left( {\frac{ \Xi }{2g_{QAM} }} \right) ^{\alpha /2}\int \limits _0^1 {t^{{(\alpha -1)}/2}\left( {1\!-\!t/2} \right) ^{{-1}/2}\exp \left( {\frac{\Xi t}{4g_{QAM} }} \right) W_{-\alpha /2,\beta /2} \left( {\frac{\Xi t}{2g_{QAM} }} \right) dt}\nonumber \\ \end{aligned}$$
(27)

With the help of [15, Equation (9.220.4)], [15, Equation (9.220.3)] and [15, Equation (9.220.2)] Eq. (27) can be expressed as:

$$\begin{aligned} I_3&= \frac{1}{2\sqrt{2}} \left( {\frac{ \Xi }{2g_{QAM} }} \right) ^{\alpha /2}\int \limits _0^1 {t^{{(\alpha -1)}/2}\left( {1-t/2} \right) ^{{-1}/2} \left[ {\frac{\Gamma (-\beta )}{\Gamma (1/2-\beta /2+\alpha /2)}} \right. } \left( {\frac{\Xi t}{2g_{QAM} }} \right) ^{{(\beta +1)}/2}\nonumber \\&\quad \times 1F1\left( {\frac{\alpha +\beta +1}{2},\beta +1,\frac{\Xi t}{2g_{QAM} }} \right) +\frac{\Gamma (\beta )}{\Gamma (1/2+\beta /2+\alpha /2)}\left( {\frac{\Xi t}{2g_{QAM} }} \right) ^{{(-\beta +1)}/2}\nonumber \\&\quad \left. {\times 1F1\left( {\frac{\alpha -\beta +1}{2},\beta +1,\frac{\Xi t}{2g_{QAM} }} \right) } \right] dt \end{aligned}$$
(28)

where, 1F\(_{1}\) is the confluent hpergeometric function as discussed in [15, Equation (9.210.1)]. By using [15, Equation (9.210.1)] and [15, Equation (9.111)], Eq. (28) can be written as Eq. (11).

Appendix: Outage Prabability

To derive Eq. (16), we proceed by substituting the value of \(f_\gamma (\gamma )\) from Eq. (2) into Eq. (15), \(P_{out}\) can be expressed as:

$$\begin{aligned} P_{out} =1-\int \limits _{\gamma _{th} }^\infty {\frac{2\left( \gamma \right) ^{{(\alpha -1)}/2}}{\Gamma (mL)\Gamma (k)}\left( \Xi \right) ^{{\left( {\alpha +1} \right) }/2}} K_\beta \left[ {2\sqrt{\Xi \gamma }} \right] d\gamma \end{aligned}$$
(29)

By replacing \(K_\beta \left( \cdot \right) \) as \(\frac{1}{2}G{\begin{array}{ll} 2&{} 0 \\ 0&{} 2 \\ \end{array} }\left[ { {\Xi \gamma } \bigg |{\begin{array}{cc} {{\begin{array}{cc} &{} \\ \end{array} }} \\ {{\begin{array}{cc} {\beta /2}&{} {{-\beta }/2} \\ \end{array} }} \\ \end{array} }} \right] \) from [16, Equation (8.4.23.1)] in Eq. (29), we get:

$$\begin{aligned} P_{out} =1-\frac{\left( \Xi \right) ^{{\left( {\alpha +1} \right) }/2}}{\Gamma (mL)\Gamma (k)}\int \limits _{\gamma _{th} }^\infty {\left( \gamma \right) ^{{(\alpha -1)}/2}G{\begin{array}{ll} 2&{} 0 \\ 0&{} 2 \\ \end{array} }\left[ {\left. {\Xi \gamma } \right| {\begin{array}{cc} {{\begin{array}{cc} &{} \\ \end{array} }} \\ {{\begin{array}{cc} {\beta /2}&{} {{-\beta }/2} \\ \end{array} }} \\ \end{array} }} \right] } d\gamma \end{aligned}$$
(30)

Now, with the help of \(\int _u^\infty {x^{s-1}} (x-u)^{t-1}G{\small \begin{array}{ll} m&{} n \\ p&{} q \\ \end{array} }\left[ {\omega {}x\left| {{\small \begin{array}{cc} {\left( {a_p } \right) } \\ {\left( {b_q } \right) } \\ \end{array} }} \right. } \right] dx=\Gamma (t) G{\small \begin{array}{cc} {m+1}&{} n \\ {p+1}&{} {q+1} \\ \end{array} } \left[ {\omega {}\left| {{\small \begin{array}{cc} {{\begin{array}{cc} {\left( {a_p } \right) }&{} {1-s} \\ \end{array} }} \\ {{\small \begin{array}{cc} {1-s-t}&{} {\left( {b_q } \right) } \\ \end{array} }} \\ \end{array} }} \right. } \right] \) from [16, Equation (2.24.2.3)], the Eq. (30) can be expressed as Eq. (16).

Appendix: Channel Capacity by Channel Inversion with Fixed Rate

To derive Eq. (19), we proceed by sssuming, \(I_6 =\int _0^\infty {M_\gamma } \left( s \right) ds\) in Eq. (18). Using Eq. (4) \(I_{6}\) can be expressed as:

$$\begin{aligned} I_6 =\int \limits _0^\infty {\frac{\left( {\Xi /s} \right) ^{\frac{\alpha +1}{2}}}{\Gamma (mL)\Gamma (k)}} G{\begin{array}{ll} 2&{} 1 \\ 1&{} 2 \\ \end{array} }\left[ {\left. {\frac{\Xi }{s}} \right| {\begin{array}{cc} {{\left( {1-\alpha } \right) }/2} \\ {{\begin{array}{cc} {\beta /2}&{} {{-\beta }/2} \\ \end{array} }} \\ \end{array} }} \right] ds \end{aligned}$$
(31)

By putting 1/s = t in Eq. (31) and using [15, Equation (7.811.4)], Eq. (31) can be written as:

$$\begin{aligned} I_6 =\frac{\Xi \Gamma \left( {{(\alpha +\beta -1)}/2} \right) \Gamma \left( {{(\alpha -\beta -1)}/2} \right) }{\Gamma (mL){}{}\Gamma (k)} \end{aligned}$$
(32)

If we substitute value of \(I_{6}\) from Eq. (32) to Eq. (18) it results Eq. (19).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, V.K., Singh, G. Moment Generating Function Based Performance Analysis of Maximal-Ratio Combining Diversity Receivers in the Generalized-K Fading Channels. Wireless Pers Commun 77, 1959–1975 (2014). https://doi.org/10.1007/s11277-014-1618-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1618-1

Keywords