Skip to main content
Log in

Exact Outage Probability of Two-Way Decode-and-Forward Scheme with Opportunistic Relay Selection Under Physical Layer Security

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The combination of cooperative communication and physical layer security is an effective approach to overcome the disadvantages of the fading environment as well as to increase the security capacity of the wireless network. In this paper, we propose a two-way decode-and-forward scheme with a relay selection method. In the proposed protocol, two source nodes communicate with each other with the help of intermediate relays under the eavesdropping of another wireless node, called the eavesdropper node. The best relay, which is chosen by the max–min strategy, uses digital network coding to enhance secure communication and spectrum use efficiency. The system performance is analyzed and evaluated in terms of the exact closed-form outage probability over Rayleigh fading channels. The Monte-Carlo simulation results are presented to verify the theoretical analysis. Finally, the proposed protocol is compared with the two-way protocol, which does not use digital network coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delgosha, F., & Fekri, F. (2006). Public-key cryptography using paraunitary matrices. IEEE Transactions on Signal Processing, 54, 3489–3504.

    Article  Google Scholar 

  2. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54, 1355–1367.

    Article  MATH  MathSciNet  Google Scholar 

  3. Leung-Yan-Cheong, S., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transaction on Information Theory, 24, 451–456.

    Article  MATH  MathSciNet  Google Scholar 

  4. Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24, 339–348.

    Article  MATH  MathSciNet  Google Scholar 

  5. Liang, Y., Poor, H. V., & Shamai (Shitz), S. (2008). Secure communication over fading channels. IEEE Transactions on Information Theory, 54, 2470–2492.

    Google Scholar 

  6. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888.

    Article  MathSciNet  Google Scholar 

  7. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  8. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  9. Tourki, K., Yang, H.-C., & Alouini, M.-S. (2011). Accurate outage analysis of incremental decode-and-forward opportunistic relaying. IEEE Transactions on Wireless Communications, 10, 1021–1025.

    Article  Google Scholar 

  10. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4, 1787–1791.

    Article  Google Scholar 

  11. Sun, X., Xu, W., Jiang, M., & Zhao, C. (2013). Opportunistic selection for decode-and-forward cooperative networks with secure probabilistic constraints. Wireless Personal Communications, 70, 1633–1652.

    Article  Google Scholar 

  12. Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communication, 8, 5003–5011.

    Article  Google Scholar 

  13. Chen, J., Song, L., Han, Z., & Jiao, B (2011). Joint relay and jammer selection for secure decode-and-forward two-way relay communications. In Global telecommunications conference GLOBECOM 2011 (pp. 1–5).

  14. Ding, Z., Xu, M., Lu, J., & Liu, F. (2012). Improving wireless security for bidirectional communication scenarios. IEEE Transactions on Vehicular Technology, 61, 2842–2848.

    Article  Google Scholar 

  15. Wang, H.-M., Yin, Q., & Xia, X.-G. (2012). Distributed beamforming for physical-layer security of two-way relay networks. IEEE Transactions on Signal Processing, 60, 3532–3545.

    Article  MathSciNet  Google Scholar 

  16. Wang, H.-M., Yin, Q., & Xia, X.-G. (2011). Improving the physical-layer security of wireless two-way relaying via analog network coding. In Global telecommunications conference GLOBECOM, 2011 (pp. 1–6).

  17. Duy, T. T., & Kong, H. Y. (2012). Exact outage probability of cognitive two-way relaying scheme with opportunistic relay selection under interference constraint. IET Communications, 6, 2750–2759.

    Article  MathSciNet  Google Scholar 

  18. Alkheir, A., & Ibnkahla, M. (2013). An accurate approximation of the exponential integral function using a sum of exponentials. IEEE Communications Letters, 17, 1364–1367.

    Google Scholar 

Download references

Acknowledgments

This work was supported by 2014 Research Funds of Hyundai Heavy Industries for University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Yun Kong.

Appendices

Appendix 1: Solving the Probability \(\Pr \left[ {V_2 <U_2} \right] \) in (36)

From (36), we see that the probability \(\Pr \left[ {V_2 <U_2} \right] =0\) if \(v=0\). Hence, we only consider two cases with \(v\ge 1\) as follows.

Case 1: When \(\lambda _1 =\lambda _2 =\lambda \), (36) can be rewritten and solved as

$$\begin{aligned}&\Pr \left[ {V_2 <U_2} \right] \nonumber \\&\quad =v\lambda _3 \lambda \left( {\ln 8} \right) \!\!\int \limits _0^\infty {\left[ {1-\frac{\lambda _3 e^{{-\lambda \theta _x}/\gamma }}{\lambda _3 +\lambda (\theta _x +1)}} \right] ^{u+v-1}\frac{(\theta _x +1)e^{{-\lambda \theta _x}/\gamma }}{\lambda _3 +\lambda (\theta _x +1)}\left[ {\frac{1}{\lambda _3 +\lambda (\theta _x +1)}\!+\!\frac{1}{\gamma }} \right] dx} \nonumber \\&\quad =v\lambda _3 \int \limits _{\lambda _3 +\lambda }^\infty {\left[ {1-\frac{\lambda _3 e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}} \right] ^{u+v-1}\frac{e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =v\lambda _3 \int \limits _{\lambda _3 +\lambda }^\infty {\sum _{p=0}^{v+u-1} {C_{v+u-1}^p \frac{(-\lambda _3)^{p}e^{-p{\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x^{p}}} \frac{e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =v\lambda _3 \sum _{p=0}^{v+u-1} {C_{v+t-1}^p (-\lambda _3)^{p}e^{{\left( {p+1} \right) \left( {\lambda _3 +\lambda } \right) }/\gamma }} \int \limits _{\lambda _3 +\lambda }^\infty {\frac{e^{{-\left( {p+1} \right) x}/\gamma }}{x^{p+1}}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =v\lambda _3 \sum _{p=0}^{v+u-1} {C_{v+t-1}^p (-\lambda _3)^{p}e^{{\left( {p+1} \right) \left( {\lambda _3 +\lambda } \right) }/\gamma }}\nonumber \\&\qquad \times {\left( \,\,{\int \limits _{\lambda _3 +\lambda }^\infty {\frac{e^{{-\left( {p+1} \right) x}/\gamma }}{x^{p+2}}dx} +\frac{1}{\gamma }\int \limits _{\lambda _3 +\lambda }^\infty {\frac{e^{{-\left( {p+1} \right) x}/\gamma }}{x^{p+1}}dx}} \right) } \end{aligned}$$
(75)

Using the \(n\)th order exponential integral function \(E_n \left[ z \right] \) [18, Eq. (1)], and after some manipulations, we obtain the probability \(\Pr \left[ {V_2 <U_2} \right] \) as in (37) when \(\lambda _1 =\lambda _2 =\lambda \) based on (75).

Case 2: When \(\lambda _1 \ne \lambda _2 \), (36) can be rewritten and changed as

$$\begin{aligned}&\Pr \left[ {V_2 <U_2} \right] =v\lambda _3 \int \limits _{\lambda _3 +\lambda _1}^\infty {\left[ {1-\frac{\lambda _3 e^{{-\left( {x-\lambda _3 -\lambda _1} \right) }/\gamma }}{x}} \right] ^{v-1}\frac{e^{{-\left( {x-\lambda _3 -\lambda _1} \right) }/\gamma }}{x}} \left( \frac{1}{x}+\frac{1}{\gamma } \right) \nonumber \\&\qquad \times \left[ {1-\frac{\lambda _3 e^{{-\lambda _2 \left( {x-\lambda _3 -\lambda _1} \right) }/{\left( {\lambda _1 \gamma } \right) }}}{\lambda _3 +\lambda _2 (x-\lambda _3)/\lambda _1}} \right] ^{u}dx \nonumber \\&\quad =v\lambda _3 \int \limits _{\lambda _3 +\lambda }^\infty {\sum _{p=0}^{v-1} {C_{v-1}^p \frac{(-\lambda _3)^{p}e^{-p{\left( {x-\lambda _3 -\lambda _1} \right) }/\gamma }}{x^{p}}} \frac{e^{{-\left( {x-\lambda _3 -\lambda _1} \right) }/\gamma }}{x}} \left( \frac{1}{x}+\frac{1}{\gamma } \right) \nonumber \\&\qquad \times \left[ {1-\frac{\lambda _3 \lambda _1 e^{{\lambda _2 \left( {\lambda _3 +\lambda _1} \right) }/{\left( {\lambda _1 \gamma } \right) }}e^{{-\lambda _2 x}/{\left( {\lambda _1 \gamma } \right) }}}{\lambda _2 x+\lambda _3 (\lambda _1 -\lambda _2)}} \right] ^{u}dx \nonumber \\&\quad =v\lambda _3 \sum _{p=0}^{v-1} {C_{v-1}^p (-\lambda _3 )^{p}e^{{\left( {p+1} \right) \left( {\lambda _3 +\lambda _1} \right) }/\gamma }}\nonumber \\&\qquad \times \left( {\begin{array}{l} \sum _{q=0}^u {C_t^q (-\lambda _3 \lambda _1)^{q}e^{{q\lambda _2 \left( {\lambda _3 +\lambda _1} \right) }/{\left( {\lambda _1 \gamma } \right) }}} \underbrace{\int \limits _{\lambda _3 +\lambda _1}^\infty {\frac{e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _2}{\lambda _1 \gamma }} \right) }}{\left[ {\lambda _2 x+\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{q}x^{p+2}}dx}}_{H_1} \\ +\frac{1}{\gamma }\sum _{q=0}^u {C_t^q (-\lambda _3 \lambda _1)^{q}e^{{q\lambda _2 \left( {\lambda _3 +\lambda _1} \right) }/{\left( {\lambda _1 \gamma } \right) }}\underbrace{\int \limits _{\lambda _3 +\lambda _1}^\infty {\frac{e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _2}{\lambda _1 \gamma }} \right) }}{\left[ {\lambda _2 x+\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{q}x^{p+1}}dx}}_{H_2}} \\ \end{array}} \right) \nonumber \\ \end{aligned}$$
(76)

Using the results in [17, Eq. (47–48)] for the partial expansions of the denominators in the integrals \(H_{1}\) and \(H_{2}\), we have \(H_{1}\) and \(H_{2}\) as follows

$$\begin{aligned} H_1&= \left\{ {\begin{array}{ll} \displaystyle \int \limits _{\lambda _3 +\lambda _1}^\infty {\frac{e^{-x\left( {\frac{p+1}{\gamma }} \right) }}{x^{p+2}}dx} &{},q=0\\ \displaystyle \int \limits _{\lambda _3 +\lambda _1}^\infty {e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _2}{\lambda _1 \gamma }} \right) }\left[ {\sum _{b=1}^q {\frac{m_b^1}{\left[ {\lambda _2 x+\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{b}}+\sum _{b=1}^{p+2} {\frac{n_b^1}{x^{b}}}}} \right] dx} &{},q\ge 1 \\ \end{array}} \right. \end{aligned}$$
(77)
$$\begin{aligned} H_2&= \left\{ {\begin{array}{ll} \displaystyle \int \limits _{\lambda _3 +\lambda _1}^\infty {\frac{e^{-x\left( {\frac{p+1}{\gamma }} \right) }}{x^{p+1}}dx} &{},q=0 \\ \displaystyle \int \limits _{\lambda _3 +\lambda _1}^\infty {e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _2}{\lambda _1 \gamma }} \right) }\left[ {\sum _{b=1}^q {\frac{m_b^2}{\left[ {\lambda _2 x+\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{b}}+\sum _{b=1}^{p+1} {\frac{n_b^2}{x^{b}}}}} \right] dx} &{},q\ge 1 \\ \end{array}} \right. \end{aligned}$$
(78)

where \(m_b^1 =\frac{\left( {-1} \right) ^{p+2}\prod _{c=1}^{q-b} {(p+1+c)\lambda _2^{p+2}}}{(q-b)!\left[ {\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{p+q+2-b}}\), \(n_b^1 =\frac{\left( {-1} \right) ^{p+2-b}\prod _{c=1}^{p+2-b} {(q-1+c)\lambda _2^{p+2-b}} }{(p+2-b)!\left[ {\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{p+q+2-b}}\), \(m_b^2 =\frac{\left( {-1} \right) ^{p+1}\prod _{c=1}^{q-b} {(p+c)\lambda _2^{p+1}} }{(q-b)!\left[ {\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{p+q+1-b}}\), and \(n_b^2 =\frac{\left( {-1} \right) ^{p+1-b}\prod _{c=1}^{p+1-b} {(q-1+c)\lambda _2^{p+1-b}} }{(p+1-b)!\left[ {\lambda _3 (\lambda _1 -\lambda _2)} \right] ^{p+q+1-b}}\).

Substituting (77) and (78) into (76) and after some manipulations, we obtain the probability \(\Pr \left[ {V_2 <U_2} \right] \) as in (38) when \(\lambda _1 \ne \lambda _2\).

Appendix 2: Solving the Probability \(\Pr \left[ {U_2 <V_2 <R} \right] \) in (41)

Similar to “Appendix 1” and from (41), we also see that the probability \(\Pr \left[ {U_2 <V_2 <R} \right] =0\) if \(u=0\). Hence, we only consider two cases with\(u\ge 1\) as follows.

Case 1: When \(\lambda _1 =\lambda _2 =\lambda \), (41) can be rewritten and solved as

$$\begin{aligned}&\Pr \left[ {U_2 <V_2 <R} \right] \nonumber \\&\quad =u\lambda _3 \lambda \left( {\ln 8} \right) \!\!\int \limits _0^R {\left[ {1-\frac{\lambda _3 e^{-\lambda \frac{\theta _x}{\gamma }}}{\lambda _3 +\lambda (\theta _x +1)}} \right] ^{u+v-1}\frac{(\theta _x +1)e^{-\lambda \frac{\theta _x}{\gamma }}}{\lambda _3 +\lambda (\theta _x +1)}\left[ {\frac{1}{\lambda _3 +\lambda (\theta _x +1)}\!+\!\frac{1}{\gamma }} \right] dx} \nonumber \\&\quad =u\lambda _3 \int \limits _{\lambda _3 +\lambda }^{\lambda _3 +\lambda \left( {\theta _R +1} \right) } {\left[ {1-\frac{\lambda _3 e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}} \right] ^{u+v-1}\frac{e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =u\lambda _3 \int \limits _{\lambda _3 +\lambda }^{\lambda _3 +\lambda \left( {\theta _R +1} \right) } {\sum _{p=0}^{v+u-1} {C_{v+u-1}^p \frac{(-\lambda _3)^{p}e^{-p{\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x^{p}}} \frac{e^{{-\left( {x-\lambda _3 -\lambda } \right) }/\gamma }}{x}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =u\lambda _3 \sum _{p=0}^{v+u-1} {C_{v+u-1}^p (-\lambda _3)^{p}e^{{\left( {p+1} \right) \left( {\lambda _3 +\lambda } \right) }/\gamma }} \int \limits _{\lambda _3 +\lambda }^{\lambda _3 +\lambda \left( {\theta _R +1} \right) } {\frac{e^{{-\left( {p+1} \right) x}/\gamma }}{x^{p+1}}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&\quad =u\lambda _3 \sum _{p=0}^{v+u-1} {C_{v+u-1}^p (-\lambda _3)^{p}e^{\frac{\left( {p+1} \right) \left( {\lambda _3 +\lambda } \right) }{\gamma }}}\nonumber \\&\qquad \times {\left( {\int \limits _{\lambda _3 +\lambda }^{\lambda _3 +\lambda \left( {\theta _R +1} \right) } {\frac{e^{\frac{-\left( {p+1} \right) x}{\gamma }}}{x^{p+2}}dx} +\frac{1}{\gamma }\int \limits _{\lambda _3 +\lambda }^{\lambda _3 +\lambda \left( {\theta _R +1} \right) } {\frac{e^{\frac{-\left( {p+1} \right) x}{\gamma }}}{x^{p+1}}dx}} \right) } \end{aligned}$$
(79)

Using the definition of the \(n\)th order exponential integral function [18, Eq. (1)], and after some manipulations, we obtain the probability \(\Pr \left[ {U_2 <V_2 <R} \right] \) as in (42) when \(\lambda _1 =\lambda _2~=~\lambda \).

Case 2: When \(\lambda _1 \ne \lambda _2\), (41) can be rewritten and changed as

$$\begin{aligned}&\Pr \left[ {U_2 <V_2 <R} \right] =u\lambda _3 \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\left[ {1-\frac{\lambda _3 e^{\frac{-\left( {x-\lambda _3 -\lambda _2 } \right) }{\gamma }}}{x}} \right] ^{u-1}\frac{e^{\frac{-\left( {x-\lambda _3 -\lambda _2} \right) }{\gamma }}}{x}} \left( \frac{1}{x}+\frac{1}{\gamma } \right) \nonumber \\&\qquad \times \left[ {1-\frac{\lambda _3 e^{\frac{-\lambda _1 \left( {x-\lambda _3 -\lambda _2} \right) }{\lambda _2 \gamma }}}{\lambda _3 +\frac{\lambda _1 (x-\lambda _3)}{\lambda _2}}} \right] ^{v}dx \nonumber \\&\quad =u\lambda _3 \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\sum _{p=0}^{u-1} {C_{u-1}^p \frac{(-\lambda _3)^{p}e^{\frac{-p\left( {x-\lambda _3 -\lambda _2} \right) }{\gamma }}}{x^{p}}} \frac{e^{\frac{-\left( {x-\lambda _3 -\lambda _2} \right) }{\gamma }}}{x}} \left( \frac{1}{x}+\frac{1}{\gamma } \right) \nonumber \\&\qquad \times \left[ {1-\frac{\lambda _3 \lambda _2 e^{\frac{\lambda _1 \left( {\lambda _3 +\lambda _2} \right) }{\lambda _2 \gamma }}e^{\frac{-\lambda _1 x}{\lambda _2 \gamma }}}{\lambda _1 x+\lambda _3 (\lambda _2 -\lambda _1)}} \right] ^{v}dx \nonumber \\&\quad =u\lambda _3 \sum _{p=0}^{u-1} {C_{u-1}^p (-\lambda _3 )^{p}e^{\frac{\left( {p+1} \right) \left( {\lambda _3 +\lambda _2} \right) }{\gamma }}}\nonumber \\&\qquad \times \left( {\begin{array}{l} \sum _{q=0}^v {C_v^q (-\lambda _3 \lambda _2)^{q}e^{\frac{q\lambda _1 \left( {\lambda _3 +\lambda _2} \right) }{\lambda _2 \gamma }}} \underbrace{\int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\frac{e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _1}{\lambda _2 \gamma }} \right) }}{\left[ {\lambda _1 x+\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{q}x^{p+2}}dx}}_{H_3} \\ +\frac{1}{\gamma }\sum _{q=0}^v {C_v^q (-\lambda _3 \lambda _2)^{q}e^{\frac{q\lambda _1 \left( {\lambda _3 +\lambda _2} \right) }{\lambda _2 \gamma }}\underbrace{\int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\frac{e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _1}{\lambda _2 \gamma }} \right) }}{\left[ {\lambda _1 x+\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{q}x^{p+1}}dx}}_{H_4}} \\ \end{array}} \right) \nonumber \\ \end{aligned}$$
(80)

Similar to solving the integrals \(H_{1}\) and \(H_{2}\), we obtain \(H_{3}\) and \(H_{4}\) as follows

$$\begin{aligned} H_3&= \left\{ {\begin{array}{ll} \displaystyle \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\frac{e^{-x\left( {\frac{p+1}{\gamma }} \right) }}{x^{p+2}}dx} &{},q=0 \\ \displaystyle \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _1}{\lambda _2 \gamma }} \right) }\left[ {\sum _{b=1}^q {\frac{m_b^3}{\left[ {\lambda _1 x+\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{b}}+\sum _{b=1}^{p+2} {\frac{n_b^3}{x^{b}}}}} \right] dx} &{},q\ge 1 \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(81)
$$\begin{aligned} H_4&= \left\{ {\begin{array}{ll} \displaystyle \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {\frac{e^{-x\left( {\frac{p+1}{\gamma }} \right) }}{x^{p+1}}dx} &{},q=0 \\ \displaystyle \int \limits _{\lambda _3 +\lambda _2}^{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) } {e^{-x\left( {\frac{p+1}{\gamma }+\frac{q\lambda _1}{\lambda _2 \gamma }} \right) }\left[ {\sum _{b=1}^q {\frac{m_b^4}{\left[ {\lambda _1 x+\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{b}}+\sum _{b=1}^{p+1} {\frac{n_b^4}{x^{b}}}}} \right] dx} &{},q\ge 1 \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(82)

where \(m_b^3 =\frac{\left( {-1} \right) ^{p+2}\prod _{c=1}^{q-b} {(p+1+c)\lambda _1^{p+2}}}{(q-b)!\left[ {\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{p+q+2-b}}, n_b^3 =\frac{\left( {-1} \right) ^{p+2-b}\prod _{c=1}^{p+2-b} {(q-1+c)\lambda _1^{p+2-b}} }{(p+2-b)!\left[ {\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{p+q+2-b}}\), \(m_b^4 =\frac{\left( {-1} \right) ^{p+1}\prod _{c=1}^{q-b} {(p+c)\lambda _1^{p+1}} }{(q-b)!\left[ {\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{p+q+1-b}}\), and \(n_b^4 =\frac{\left( {-1} \right) ^{p+1-b}\prod _{c=1}^{p+1-b} {(q-1+c)\lambda _1^{p+1-b}} }{(p+1-b)!\left[ {\lambda _3 (\lambda _2 -\lambda _1)} \right] ^{p+q+1-b}}\).

Substituting (81) and (82) into (80) and after some manipulations, we obtain the probability \(\Pr \left[ {U_2 <V_2 <R} \right] \) as in (43) when \(\lambda _1 \ne \lambda _2\).

Appendix 3: Solving Formula (52)

Formula (52) is written as

$$\begin{aligned} \Omega&= \frac{\partial \left\{ {\Pr [{ ASR }_{2b}^3 <R]-\Pr [{ ASR }_{2b}^3 <R,\min ({ ASR }_{1b}^3,{ ASR }_{2b}^3)>x]} \right\} }{\partial x} \nonumber \\&= -\frac{\partial \, \Pr [{ ASR }_{2b}^3 <R,\min ({ ASR }_{1b}^3,{ ASR }_{2b}^3)>x]}{\partial x} \end{aligned}$$
(83)

Substituting (2529) into (83), we have (84) as

$$\begin{aligned} \Omega =-\frac{\partial \, \Pr \left[ \omega _{2b}^3 <\frac{\theta _R }{\gamma }+\left( {\theta _R +1} \right) \omega _{3b}, \omega _{1b}^3 >\frac{\theta _x}{\gamma }+\left( {\theta _x +1} \right) \omega _{3b}, \omega _{2b}^3 >\frac{\theta _x}{\gamma }+\left( {\theta _x +1} \right) \omega _{3b} \right] }{\partial x}\nonumber \\ \end{aligned}$$
(84)

When \(x>R\), then

$$\begin{aligned} \Omega =-\frac{\partial \left\{ 0 \right\} }{\partial x}=0 \end{aligned}$$
(85)

Next, we consider the case in which \(x\le R\), and then \(\Omega \) is obtained as

$$\begin{aligned} \Omega =-\frac{\partial \left\{ {\int \limits _0^\infty {f_{\omega _{3b}} (t)\left\{ {1-F_{\omega _{1b}^3} \left[ {\frac{\theta _x}{\gamma }+\left( {\theta _x +1} \right) t} \right] } \right\} \left\{ {F_{\omega _{2b}^3} \left[ {\frac{\theta _x}{\gamma }+\left( {\theta _x +1} \right) t} \right] -F_{\omega _{2b}^3} \left[ {\frac{\theta _R}{\gamma }+\left( {\theta _R +1} \right) t} \right] } \right\} } dt} \right\} }{\partial x}\nonumber \\ \end{aligned}$$
(86)

where \(f_{\omega _{3b}} (x), F_{\omega _{1b}^3} (x)\) and \(F_{\omega _{2b}^3} (x)\) are the PDF of the exponential random variable \(\omega _{3b}\) and the CDFs of the exponential random variables \(\omega _{1b}^3\) and \(\omega _{2b}^3\), respectively, and are given as

$$\begin{aligned} f_{\omega _{3b}} (x)&= \lambda _3 e^{-\lambda _3 x} \end{aligned}$$
(87)
$$\begin{aligned} F_{\omega _{1b}^3} (x)&= 1-e^{-\lambda _1 x} \end{aligned}$$
(88)
$$\begin{aligned} F_{\omega _{2b}^3} (x)&= 1-e^{-\lambda _2 x} \end{aligned}$$
(89)

Substituting (8789) into (86), we obtain (90) as

$$\begin{aligned} \Omega =-\frac{\partial \left\{ {\frac{\lambda _3 e^{{-\left( {\lambda _1 +\lambda _2} \right) \theta _x}/\gamma }}{\lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }-\frac{\lambda _3 e^{{-\lambda _1 \theta _x}/\gamma {-\lambda _2 \theta _R}/\gamma }}{\lambda _3 +\lambda _1 \left( {\theta _x +1} \right) +\lambda _2 \left( {\theta _R +1} \right) }} \right\} }{\partial x} \end{aligned}$$
(90)

Substituting (9) into (90) and after some manipulations of the derivation, we obtain \(\Omega \) as in (53).

Appendix 4: Solving (54)

Formula (54) is separated into two parts, called PA and PB, as follows:

$$\begin{aligned} \Pr \left[ {\underbrace{{ ASR }_{2b}^3}_{R_b \in DS}(R_b)<R} \right] =PA{-}PB \end{aligned}$$
(91)

where

$$\begin{aligned} \hbox {P}A&= n\lambda _3 e^{{\left( {\lambda _1 +\lambda _2} \right) }/\gamma }\left( {\lambda _1 +\lambda _2} \right) \left( {\ln 8} \right) \int \limits _0^R {\frac{\left( {\theta _x +1} \right) e^{{-\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }/\gamma }}{\lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }}\nonumber \\&\quad \times \left[ {1-\frac{\lambda _3 e^{{-\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }/\gamma }}{\lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }} \right] ^{n-1}\left( {\frac{1}{\lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }+\frac{1}{\gamma }} \right) dx \end{aligned}$$
(92)
$$\begin{aligned} \hbox {P}B&= n\lambda _3 \lambda _1 e^{{\left( {\lambda _1 -\lambda _2 \theta _R} \right) }/\gamma }\left( {\ln 8} \right) \int \limits _0^R {\frac{\left( {\theta _x +1} \right) e^{{-\lambda _1 \left( {\theta _x +1} \right) }/\gamma }}{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) +\lambda _1 \left( {\theta _x +1} \right) }} \nonumber \\&\quad \times \left[ {1-\frac{\lambda _3 e^{{-\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }/\gamma }}{\lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _x +1} \right) }} \right] ^{n-1}\left( {\frac{1}{\lambda _3 +\lambda _2 \left( {\theta _R +1} \right) +\lambda _1 \left( {\theta _x \!+\!1} \right) }\!+\!\frac{1}{\gamma }} \right) dx\nonumber \\ \end{aligned}$$
(93)

By changing the variable of (92), part PA is obtained as

$$\begin{aligned} PA&= n\lambda _3 e^{\frac{\left( {\lambda _1 +\lambda _2} \right) }{\gamma }}\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-\left( {x-\lambda _3} \right) }{\gamma }}}{x}\left[ {1-\frac{\lambda _3 e^{\frac{-\left( {x-\lambda _1 -\lambda _2 -\lambda _3} \right) }{\gamma }}}{x}} \right] ^{n-1}\left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&= n\lambda _3 e^{\frac{\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-x}{\gamma }}}{x}\sum _{p=0}^{n-1} {\frac{C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{-p\left( {x-\lambda _1 -\lambda _2 -\lambda _3} \right) }{\gamma }}}{x^{p}}} \left( {\frac{1}{x}+\frac{1}{\gamma }} \right) dx} \nonumber \\&= n\lambda _3 e^{\frac{\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}\sum _{p=0}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}} \left\{ {\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-x\left( {p+1} \right) }{\gamma }}}{x^{p+2}}dx} +\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-x\left( {p+1} \right) }{\gamma }}}{\gamma x^{p+1}}dx}} \right\} \nonumber \\&= n\lambda _3 e^{\frac{\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}\sum _{p=0}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}} \left\{ G\left[ {\frac{p+1}{\gamma };a_1 ;a_2 ;p+2} \right] \right. \nonumber \\&\quad \left. +\frac{G\left[ {\frac{p+1}{\gamma };a_1 ;a_2 ;p+1} \right] }{\gamma } \right\} \end{aligned}$$
(94)

Next, by changing the variable of (92), part PB is rewritten as

$$\begin{aligned} PB&= n\lambda _3 \lambda _1 e^{{\left( {\lambda _1 -\lambda _2 \theta _R +\frac{\lambda _1 \lambda _3}{\lambda _1 +\lambda _2}} \right) }/\gamma }\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-\lambda _1 x}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\lambda _1 x+a_3}\left[ {1-\frac{\lambda _3 e^{\frac{-\left( {x-\lambda _1 -\lambda _2 -\lambda _3} \right) }{\gamma }}}{x}} \right] ^{n-1}\left( {\frac{\lambda _1 +\lambda _2}{\lambda _1 x+a_3}+\frac{1}{\gamma }} \right) dx} \nonumber \\&= n\lambda _3 \lambda _1 e^{{\left( {\lambda _1 -\lambda _2 \theta _R +\frac{\lambda _1 \lambda _3}{\lambda _1 +\lambda _2}} \right) }/\gamma }\int \limits _{a_1}^{a_2} {\sum _{p=0}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}} \frac{e^{{-x\left( {\frac{\lambda _1}{\lambda _1 +\lambda _2}+p} \right) }/\gamma }}{x^{p}\left( {\lambda _1 x+a_3} \right) }\left( {\frac{\lambda _1 +\lambda _2}{\lambda _1 x+a_3}+\frac{1}{\gamma }} \right) dx} \nonumber \\&= n\lambda _3 \lambda _1 e^{{\left( {\lambda _1 -\lambda _2 \theta _R +{\lambda _1 \lambda _3}/{\left( {\lambda _1 +\lambda _2} \right) }} \right) }/\gamma } \nonumber \\&\quad \times \left\{ {\begin{array}{l} \underbrace{\left( {\lambda _1 +\lambda _2} \right) \int \limits _{a_1}^{a_2} {\frac{e^{\frac{-\lambda _1 x}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\left( {\lambda _1 x+a_3} \right) ^{2}}dx}}_{H_5}+\underbrace{\left( {\lambda _1 +\lambda _2} \right) \sum _{p=1}^{n-1} {C_{k-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}} \int \limits _{a_1}^{a_2} {\frac{e^{{-x\left( {\frac{\lambda _1}{\lambda _1 +\lambda _2}+p} \right) }/\gamma }}{x^{p}\left( {\lambda _1 x+a_3} \right) ^{2}}dx}}_{H_6} \\ +\underbrace{\int \limits _{a_1}^{a_2} {\frac{e^{\frac{-\lambda _1 x}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\gamma \left( {\lambda _1 x+a_3} \right) }dx}}_{H_7}+\underbrace{\sum _{p=1}^{n-1} {C_{k-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}} \int \limits _{a_1}^{a_2} {\frac{e^{{-x\left( {\frac{\lambda _1}{\lambda _1 +\lambda _2}+p} \right) }/\gamma }}{\gamma x^{p}\left( {\lambda _1 x+a_3} \right) }dx}}_{H_8} \\ \end{array}} \right\} \nonumber \\ \end{aligned}$$
(95)

where the constants \(a_{1}, a_{2}\) and \(a_{3}\) are denoted as

$$\begin{aligned} a_1&= \lambda _1 +\lambda _2 +\lambda _3 \end{aligned}$$
(96)
$$\begin{aligned} a_2&= \lambda _3 +\left( {\lambda _1 +\lambda _2} \right) \left( {\theta _R +1} \right) \end{aligned}$$
(97)
$$\begin{aligned} a_3&= \lambda _2 \lambda _3 +\lambda _2 \left( {\lambda _1 +\lambda _2} \right) \left( {\theta _R +1} \right) \end{aligned}$$
(98)

In (95), part \(H_{5}\) can be calculated as

$$\begin{aligned} H_5&= \left( {\lambda _1 +\lambda _2} \right) \int \limits _{a_1}^{a_2} {\frac{e^{{-\lambda _1 x}/{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\left( {\lambda _1 x+a_3} \right) ^{2}}dx} =\frac{\left( {\lambda _1 +\lambda _2} \right) e^{\frac{a_3}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\lambda _1}\nonumber \\&\times \left\{ {\frac{E_2 \left[ {\frac{a_3 +\lambda _1 a_1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }} \right] }{a_3 +\lambda _1 a_1}-\frac{E_2 \left[ {\frac{a_3 +\lambda _1 a_2}{\gamma \left( {\lambda _1 +\lambda _2} \right) }} \right] }{a_3 +\lambda _1 a_2}} \right\} \nonumber \\&= \frac{\left( {\lambda _1 +\lambda _2} \right) e^{\frac{a_3}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\lambda _1}G\left[ {\frac{1}{\gamma \left( {\lambda _1 +\lambda _2} \right) };a_3 +\lambda _1 a_1 ;a_3 +\lambda _1 a_2 ;2} \right] \end{aligned}$$
(99)

Similar to \(H_{5}\), part \(H_{7}\) is given as

$$\begin{aligned} H_7&= \int \limits _{a_1}^{a_2} {\frac{e^{{-\lambda _1 x}/{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\gamma \left( {\lambda _1 x+a_3} \right) }dx} \nonumber \\&= \frac{e^{\frac{a_3}{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\gamma \lambda _1}\left\{ {E_1 \left[ {\frac{a_3 +\lambda _1 a_1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }} \right] -E_1 \left[ {\frac{a_3 +\lambda _1 a_2}{\gamma \left( {\lambda _1 +\lambda _2} \right) }} \right] } \right\} \nonumber \\&= \frac{e^{{a_3}/{\gamma \left( {\lambda _1 +\lambda _2} \right) }}}{\gamma \lambda _1}G\left[ {\frac{1}{\gamma \left( {\lambda _1 +\lambda _2} \right) };a_3 +\lambda _1 a_1 ;a_3 +\lambda _1 a_2 ;1} \right] \end{aligned}$$
(100)

Using the partial expansion of the denominator the same as in integral \(H_{1}\), part \(H_{6}\) is calculated as

$$\begin{aligned} H_6&= \left( {\lambda _1 +\lambda _2} \right) \sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}\int \limits _{a_1}^{a_2} {e^{\frac{-x\left( {\frac{\lambda _1}{\lambda _1 +\lambda _2}+p} \right) }{\gamma }}}}\nonumber \\&\times {{\left[ {\sum _{b=1}^2 {\frac{m_b^5}{\left[ {\lambda _1 x+a_3)} \right] ^{b}}+\sum _{b=1}^p {\frac{n_b^5}{x^{b}}}}} \right] dx}} \nonumber \\&= \left( {\lambda _1 +\lambda _2} \right) \sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }/\gamma }} \nonumber \\&\quad \times \left\{ {\begin{array}{l} \sum _{b=1}^2 {\frac{m_b^5 e^{\frac{a_3 \left[ {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right] }{\gamma \lambda _1 }}}{\lambda _1}\left\{ {\begin{array}{l} \frac{E_b \left[ {\frac{\left( {a_3 +\lambda _1 a_1} \right) \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma \lambda _1}} \right] }{\left( {a_3 +\lambda _1 a_1} \right) ^{b-1}} \\ -\frac{E_b \left[ {\frac{\left( {a_3 +\lambda _1 a_2} \right) \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma \lambda _1}} \right] }{\left( {a_3 +\lambda _1 a_2} \right) ^{b-1}} \\ \end{array}} \right\} } \\ +\sum _{b=1}^p {n_b^5 \left\{ {\frac{E_b \left[ {\frac{a_1 \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma }} \right] }{a_1^{b-1}}-\frac{E_b \left[ {\frac{a_2 \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma }} \right] }{a_2^{b-1}}} \right\} } \\ \end{array}} \right\} \nonumber \\&= \left( {\lambda _1 +\lambda _2} \right) \sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }/\gamma }}\nonumber \\&\quad \times \left\{ {\begin{array}{l} \sum _{b=1}^2 {\frac{m_b^5 e^{\frac{a_3 \left[ {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right] }{\gamma \lambda _1}}}{\lambda _1}G\left[ {\frac{1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }+\frac{p}{\gamma \lambda _1};a_3 +\lambda _1 a_1 ;a_3 +\lambda _1 a_2 ;b} \right] } \\ +\sum _{b=1}^p {n_b^5 G\left[ {\frac{\lambda _1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }+\frac{p}{\gamma };a_1 ;a_2 ;b} \right] } \\ \end{array}} \right\} \nonumber \\ \end{aligned}$$
(101)

where \(m_b^5 =\frac{\left( {-1} \right) ^{p}\prod _{c=1}^{2-b} {(p-1+c)\lambda _1^p}}{(2-b)!a_3^{p+2-b}}\) and \(n_b^5 =\frac{\left( {-1} \right) ^{p-b}\prod _{c=1}^{p-b} {(1+c)\lambda _1^{p-b}} }{(p-b)!a_3^{p+2-b}}\).

Similar to \(H_{6}\), part \(H_{8}\) can be calculated as

$$\begin{aligned} H_8&= \frac{1}{\gamma }\sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{\frac{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }{\gamma }}\int \limits _{a_1}^{a_2} {e^{\frac{-x\left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) }+p} \right) }{\gamma }}\left[ {\frac{m_1^6}{\lambda _1 x+a_3}+\sum _{b=1}^p {\frac{n_b^6}{x^{b}}}} \right] dx}} \nonumber \\&= \frac{1}{\gamma }\sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }/\gamma }} \nonumber \\&\quad \times \left\{ {\begin{array}{l} \frac{m_1^6 e^{\frac{a_3 \left[ {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right] }{\gamma \lambda _1}}}{\lambda _1}\left\{ {\begin{array}{l} E_1 \left[ {\frac{\left( {a_3 +\lambda _1 a_1} \right) \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma \lambda _1}} \right] \\ -E_1 \left[ {\frac{\left( {a_3 +\lambda _1 a_2} \right) \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma \lambda _1}} \right] \\ \end{array}} \right\} \\ +\sum _{b=1}^p {n_b^6 \left\{ {\frac{E_b \left[ {\frac{a_1 \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma }} \right] }{a_1^{b-1}}-\frac{E_b \left[ {\frac{a_2 \left( {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right) }{\gamma }} \right] }{a_2^{b-1}}} \right\} } \\ \end{array}} \right\} \nonumber \\&= \frac{1}{\gamma }\sum _{p=1}^{n-1} {C_{n-1}^p \left( {-\lambda _3} \right) ^{p}e^{{p\left( {\lambda _1 +\lambda _2 +\lambda _3} \right) }/\gamma }} \nonumber \\&\quad \times \left\{ {\begin{array}{l} \frac{m_1^6 e^{\frac{a_3 \left[ {{\lambda _1}/{\left( {\lambda _1 +\lambda _2} \right) +p}} \right] }{\gamma \lambda _1}}}{\lambda _1}G\left[ {\frac{1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }+\frac{p}{\gamma \lambda _1};a_3 +\lambda _1 a_1 ;a_3 +\lambda _1 a_2 ;1} \right] \\ +\sum _{b=1}^p {n_b^6 G\left[ {\frac{\lambda _1}{\gamma \left( {\lambda _1 +\lambda _2} \right) }+\frac{p}{\gamma };a_3 +\lambda _1 a_1 ;a_3 +\lambda _1 a_2 ;b} \right] } \\ \end{array}} \right\} \end{aligned}$$
(102)

where \(m_1^6 =\left( {-\frac{\lambda _1}{a_3}} \right) ^{p}\) and \(n_b^6 =\frac{\left( {-\lambda _1} \right) ^{p-b}}{a_3^{p+1-b}}\).

Substituting (99102) into (95), we have part PB, and then combining parts PA and PB based on (91), we obtain \(\Pr \left[ {\underbrace{{ ASR }_{2b}^3}_{R_b \in DS}(R_b)<R} \right] \) as in (55).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, P.N., Kong, H.Y. Exact Outage Probability of Two-Way Decode-and-Forward Scheme with Opportunistic Relay Selection Under Physical Layer Security. Wireless Pers Commun 77, 2889–2917 (2014). https://doi.org/10.1007/s11277-014-1674-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1674-6

Keywords

Navigation