Skip to main content
Log in

Choice of Detection Parameters on Fault Detection in Wireless Sensor Networks: A Multiobjective Optimization Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the intermittent fault detection in wireless sensor networks is formulated as an optimization problem and a recently introduced multiobjective swarm optimization (2LB-MOPSO) algorithm is used to find an optimum trade-off between detection accuracy and detection latency. Faulty sensor nodes are identified based on comparisons of sensed data between one-hop neighboring nodes. Time redundancy is used to detect intermittent faults since an intermittent fault does not occur consistently. Simulation and analytical results show that sensor nodes with permanent faults are identified with high accuracy and by properly choosing the inter-test interval most of the intermittent faults are isolated with negligible performance degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Faults are classified as: crash, omission, timing, and Byzantine. Crash faults are hard faults, and all others can be treated as soft faults.

  2. Perfect test: a fault is always detected by the test when it occurs, and is isolated.

References

  1. Gao, J.-L., Xu, Y.-J., & Li, X. W. (May 2007). Weighted-median based distributed fault detection for wireless sensor networks. Journal of Software, 18(5), 1208–1217.

    Google Scholar 

  2. Mahapatro, A., & Khilar, P. (2013). Fault diagnosis in wireless sensor networks: A survey. Communications Surveys Tutorials, IEEE, 15(4), 2000–2026.

    Article  Google Scholar 

  3. Serafini, M., Bondavalli, A., & Suri, N. (2007). On-line diagnosis and recovery: On the choice and impact of tuning parameters. IEEE Transactions on Dependable and Secure Computing, 4(4), 295–312.

    Article  Google Scholar 

  4. Sedighi, T., Phillips, P., & Foote, P. D. (2013). Model-based intermittent fault detection. Procedia CIRP 11, 68–73.

  5. Zhao, S. Z., & Suganthan, P. N. (2011). Two-lbests based multi-objective particle swarm optimizer. Engineering Optimization, 43(1), 1–17.

    Article  MathSciNet  Google Scholar 

  6. Dhillon, J. S., Parti, S. C., & Kothari, D. P. (1993). Stochastic economic emission load dispatch. Electric Power Systems Research, 26(3), 179–186.

    Article  Google Scholar 

  7. Chessa, S., & Santi, P. (2002). Crash faults identification in wireless sensor networks. Computer Communications, 25(14), 1273–1282.

    Article  Google Scholar 

  8. Chen, J., Kher, S., & Somani, A. (2006) Distributed fault detection of wireless sensor networks. In Proceedings of the 2006 workshop on dependability issues in wireless ad hoc networks and sensor networks, New York, NY, USA, ACM, pp. 65–72.

  9. Jiang, P. (2009). A new method for node fault detection in wireless sensor networks. Sensors, 9(2), 1282–1294.

    Article  Google Scholar 

  10. Elhadef, M., Boukerche, A., & Elkadiki, H. (2008). A distributed fault identification protocol for wireless and mobile ad hoc networks. Journal Parallel Distributed Computing, 68, 321–335.

    Article  MATH  Google Scholar 

  11. Miao, X., Liu, K., He, Y., Liu, Y., & Papadias, D. (2011). Agnostic diagnosis: Discovering silent failures in wireless sensor networks. In INFOCOM, pp. 1548–1556.

  12. Kim, D. J., & Prabhakaran, B. (2011). Motion fault detection and isolation in body sensor networks. Pervasive and Mobile Computing, 7(6), 727–745.

    Article  Google Scholar 

  13. Wang, W., Wang, B., Liu, Z., & Guo, L. (2011). A cluster-based real-time fault diagnosis aggregation algorithm for wireless sensor networks. Information Technology Journal, 10(1), 80–88.

    Article  MathSciNet  Google Scholar 

  14. Babaie, S., Khosrohosseini, A., & Khadem-Zadeh, A. (2013). A new self-diagnosing approach based on petri nets and correlation graphs for fault management in wireless sensor networks. Journal of Systems Architecture, 59(8), 582–600.

    Article  Google Scholar 

  15. Lee, M. H., & Choi, Y. H. (2008). Fault detection of wireless sensor networks. Computer Communications, 31(14), 3469–3475.

    Article  Google Scholar 

  16. Khilar, P., & Mahapatra, S. (2007). Intermittent fault diagnosis in wireless sensor networks. In 10th International conference on information, technology, pp. 145–147.

  17. Xu, X., Chen, W., Wan, J., & Yu, R. (November 2008). Distributed fault diagnosis of wireless sensor networks. In 11th IEEE International conference on communication, technology, pp. 148–151.

  18. Yim, S. J., & Choi, Y. H. (2010). An adaptive fault-tolerant event detection scheme for wireless sensor networks. Sensors, 10(3), 2332–2347.

    Article  Google Scholar 

  19. Ji, Z., Bing-shu, W., Yong-guang, M., Rong-hua, Z., & Jian, D. (October 2006). Fault diagnosis of sensor network using information fusion defined on different reference sets. In International conference on Radar, pp. 1–5.

  20. Jabbari, A., Jedermann, R., & Lang, W. (2007). Application of computational intelligence for sensor fault detection and isolation. In World academy of science, engineering and technology, pp. 265–270.

  21. Moustapha, A., & Selmic, R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Transactions on Instrumentation and Measurement, 57(5), 981–988.

    Article  Google Scholar 

  22. Zhang, X. L., Zhang, F., Yuan, J., lan Weng, J., & Hua Zhang, W. (August 2010). Sensor fault diagnosis and location for small and medium-scale wireless sensor networks. In Sixth international conference on natural computation, pp. 3628–3632.

  23. Chenglin, Z., Xuebin, S., Songlin, S., & Ting, J. (2011). Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine. Expert Systems with Applications, 38(8), 9908–9912.

    Article  Google Scholar 

  24. Obst, O. (2013). Distributed fault detection in sensor networks using a recurrent neural network. Neural Processing Letters, 1–13. doi:10.1007/s11063-013-9327-4.

  25. Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor networks. IEEE Communications Letters, 9(11), 976–978.

    Article  Google Scholar 

  26. Awwad, S., Ng, C., Noordin, N., & Rasid, M. (2011). Cluster based routing protocol for mobile nodes in wireless sensor network. Wireless Personal Communications, 61(2), 251–281.

    Article  Google Scholar 

  27. Guo, S., Zhong, Z., & He, T. (2009). Find: Faulty node detection for wireless sensor networks. In Proceedings of the 7th ACM conference on embedded networked sensor systems, ACM, New York, NY, USA, pp. 253–266.

  28. Vuran, M. C., Akan, O. B., & Akyildiz, I. F. (2004). Spatio-temporal correlation: Theory and applications for wireless sensor networks. Computer Networks, 45(3), 245–259.

    Article  MATH  Google Scholar 

  29. Ji, S., Fang Yuan, S., Huai Ma, T., & Tan, C. (April 2010). Distributed fault detection for wireless sensor based on weighted average. In Second international conference on networks security wireless communications and trusted computing vol. 1, pp. 57–60.

  30. Mahapatro, A., & Khilar, P. M. (2011). Sddp: Scalable distributed diagnosis protocol for wireless sensor networks. In Contemporary computing. Volume 168 of communications in computer and information science (pp. 69–80). Berlin: Springer.

  31. Mahapatro, A., & Khilar, P. (2012). Online distributed fault diagnosis in wireless sensor networks. Wireless Personal Communications, pp. 1–30.

  32. Breuer, M. (1973). Testing for intermittent faults in digital circuits. IEEE Transactions on Computers, C–22(3), 241–246.

    Article  MathSciNet  Google Scholar 

  33. Siewiorek, D. P., & Swmlz, R. S. (1992). Reliable computer system design and evaluation. Bedford, MA: Digital Press.

    Google Scholar 

  34. Su, S. Y. H., Koren, I., & Malaiya, Y. K. (1978). A continuous-parameter markov model and detection procedures for intermittent faults. IEEE Transactions on Computers, C–27(6), 567–570.

    Article  Google Scholar 

  35. Barlow, R. E., & Prochan, F. (1965). Mathematical theory of reliability. London: Wiley.

    MATH  Google Scholar 

  36. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. London: Wiley.

    MATH  Google Scholar 

  37. Abido, M.A. (2007). Two-level of nondominated solutions approach to multiobjective particle swarm optimization. In Proceedings of the 9th annual conference on genetic and evolutionary computation, ACM, pp. 726–733.

  38. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.

    Article  Google Scholar 

  39. Zielinski, K., & Laur, R. (September 2007). Differential evolution with adaptive parameter setting for multi-objective optimization. In Evolutionary computation, 2007. CEC 2007. IEEE Congress on, pp. 3585–3592.

  40. Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunanshu Mahapatro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatro, A., Panda, A.K. Choice of Detection Parameters on Fault Detection in Wireless Sensor Networks: A Multiobjective Optimization Approach. Wireless Pers Commun 78, 649–669 (2014). https://doi.org/10.1007/s11277-014-1776-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1776-1

Keywords

Navigation