Skip to main content
Log in

Diversity Antenna Design for Wireless Alarm Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Printed circuit board antennas degrade considerably when the wireless node is placed on or near metallic surfaces. One such application is wireless alarm network where nodes are placed on a metallic fence. As wireless transmission is regarded as the most expensive operation in terms of sensor node energy, it is more than a necessity to have a good antenna design. We simulate the performances of typical printed circuit board (PCB) antennas with proximity to metallic fence and simulations show that traditional antenna structures exhibit poor performance for these applications. Instead, we propose a low-cost two-antenna diversity system that utilizes two PCB antennas with different radiation pattern coverage. Antenna diversity by means of radio frequency switches was implemented for two configurations: single state antenna selection and equal-gain diversity combination. Diversity gains were calculated for free-space and over-the-fence operating conditions, and the best antenna configuration is suggested for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Anastasi, G., Conti, M., Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  2. Dietrich, C. B, Jr, Dietze, K., Nealy, J. R., & Stutzman, W. L. (2001). Spatial, polarization, and pattern diversity for wireless handheld terminals. IEEE Transactions on Antennas and Propagation, 49(9), 1271–1281.

    Article  Google Scholar 

  3. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  4. Leather, P. S. H., & Parsons, D. (2003). Antenna diversity for UHF hand portable radio. Electronics Letters, 39(13), 946–948.

    Article  Google Scholar 

  5. Chang, D.-C., Zeng, B.-H., & Liu, J.-C. (2009). Reconigurable angular diversity antenna with quad corner reflector arrays for 2.4 GHz applications. IET Microwaves, Antennas & Propagation, 3(3), 522–528.

    Article  Google Scholar 

  6. Lai, M.-I., Wu, T. Y., Hsieh, J. C., Wang, C. H., & Jeng, S. K. (2008). Compact switched-beam antenna employing a four-element slot antenna array for digital home applications. IEEE Transactions on Antennas and Propagation, 56(9), 2929–2936.

    Article  Google Scholar 

  7. Zhang, S., Hu, G. H., & Bernhard, J. T. (2004). A pattern reconfigurable microstrip parasitic array. IEEE Transactions on Antennas and Propagation, 52(10), 2773–2776.

    Article  Google Scholar 

  8. Giorgetti, G., Cidronali, A., Gupta, S. K. S., & Manes, G. (2007). Exploiting low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless sensor networks. In Proceedings of the 10th European Conference on Wireless Technology.

  9. Luca, C., Guglielmi, S., Patrono, L., & Tarricone, L. (2013). Switched beam antenna for wireless sensor network nodes. Progress in Electromagnetics Research C, 39, 193–207.

    Article  Google Scholar 

  10. http://www.ti.com/lit/an/swru120b/swru120b.pdf Last accessed Feb 25th, 2014.

  11. Kildal, P.-S., Rosengren, K., Byun, J., & Lee, J. (2002). Definition of effective diversity gain and how to measure it in a reverberation chamber. Microwave and Optical Technology Letters, 34(1), 56–59.

    Article  Google Scholar 

  12. Taga, T. (1990). Analysis for mean effective gain of mobile antennas in land mobile radio environments. IEEE Transactions on Vehicular Technology, 39(2), 117–131.

    Article  Google Scholar 

  13. Blanch, S., Romeu, J., & Corbella, I. (2003). Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 39(9), 705–707.

    Article  Google Scholar 

  14. Kildal, P.-S., & Rosengren, K. (2003). Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles. IEEE Antennas and Wireless Propagation Letters, 2, 9–13.

    Article  Google Scholar 

  15. Kong, N., & Milstein, L. B. (1999). Average SNR of a generalized diversity selection combining scheme. IEEE Communications Letters, 3(3), 57–59.

    Article  Google Scholar 

  16. Kong, N., & Milstein, L. B. (2000). SNR of generalized diversity selection combining with nonidentical rayleigh fading statistics. IEEE Transactions on Communications, 48, 1266–1271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korkut Yeğin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgiç, M.M., Yeğin, K. Diversity Antenna Design for Wireless Alarm Networks. Wireless Pers Commun 78, 729–740 (2014). https://doi.org/10.1007/s11277-014-1780-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1780-5

Keywords

Navigation