Skip to main content
Log in

TCP-BIAD for Enhancing TCP Performance in Broadband Wireless Access Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a new TCP variant, named TCP-Binary Increase, Adaptive Decrease is presented. The suggested congestion control algorithm is a joint approach of Westwood and an enhanced version of BIC, for improving TCP performance in broadband wireless access networks. BIAD has been evaluated with respect to other TCP variants such as Reno, Westwood, BIC, CUBIC, HSTCP and STCP with the use of network simulator 2. The results indicate that the proposed solution achieves high network utilization levels in a wide range of network settings, including wireless channel errors, link asymmetry and congestion. We also evaluated TCP-BIAD when multiple flows share a bottlenecked access link and we show that it demonstrates the fairness features required for network deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jacobson, V. (1998). Congestion avoidance and control. In Proceedings of ACM SIGCOMM (pp. 314–329), September 1998.

  2. Floyd, S. (2003). HighSpeed TCP for large congestion windows. In RFC 3649, December 2003.

  3. Kelly, T. (2003). Scalable TCP improving performance in high speed wide area networks. ACM SIGCOMM Computer communications Review, 32(2), 83–91.

    Article  Google Scholar 

  4. Xu, L., Harfoush, K., & Rhee, I. (2004). Binary increase congestion control for fast, long distance networks. In Proceedings of IEEE INFOCOM, March 2004.

  5. Balakrishnan, H., Padmanabhan, V., Fairhurst, G., & Sooriyabandara, M. (2002). TCP performance implications of network path asymmetry. In RFC 3449, December 2002.

  6. Casseti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP westwood: End-to-end bandwidth estimation for enhanced transport over wireless links. Wireless Networks, 8, 467–479.

    Article  Google Scholar 

  7. Xu, K., Tian, Y., & Ansari, N. (2005). Improving TCP performance in integrated wireless communications networks. Computer Networks, 47, 219–237.

    Article  Google Scholar 

  8. Wang, N.-C., Chen, J.-S., Huang, Y.-F., & Chiou, C.-L. (2008). Performance enhancement of TCP in dynamic bandwidth wired and wireless networks. Wireless Personal Communications, 47(3), 399–415.

    Article  Google Scholar 

  9. El-Ocla, H. (2010). TCP CERL: Congestion control enhancement over wireless networks. Wireless Networks, 16, 183–198.

    Article  Google Scholar 

  10. Brakmo, L. S., O’Malley, S. W., & Peterson, L. L. (1994). TCP vegas: New techniques for congestion detection and avoidance. In Proceedings of ACM SIGCOMM’94 (pp. 24–35), August 1994.

  11. Mo, J., La, R. J., Anantharam, V., & Walrand, J. (1999). Analysis and comparison of TCP reno and vegas. In Proceedings of IEEE INFOCOM’99 (pp. 1556–1563), March 1999.

  12. Tsiknas, K., & Stamatelos, G. (2012). Performance evaluation of TCP in IEEE 802.16 networks. In IEEE Wireless Communications and Networking Conference, April 2012.

  13. Rhee, L., & Xul, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating System Review, 42(5), 64–74.

    Article  Google Scholar 

  14. Grieco, L., & Mascolo, S. (2003). End-to-end bandwidth estimation for congestion control in packet networks. In Proceedings of 2nd international workshop on quality of service in multiservice IP networks, February 2003.

  15. Kelly, F. (1999). Mathematical modeling of the internet. In Proceedings of fourth international congress on industrial and applied mathematics (pp. 105–116), July 1999.

  16. Ns-2 network simulator. LBL. http://www.isi.edu/nsnam/ns.

  17. Wei, D. X. (2006). ns-2 TCP linux: An ns-2 TCP implementation with congestion control algorithms from linux. In Proccedings of valueTool’06—workshop of ns-2, October 2006.

  18. Paxson, V., & Floyd, S. (1995). Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3(3), 226–244.

    Article  Google Scholar 

  19. Wang, H. S., & Moayeri, N. (1995). Finite-state markov channel—a useful model for radio communication channels. IEEE Transaction on Vehicular Technology, 44(1), 163–171.

    Article  Google Scholar 

  20. Chiu, D. M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks ISDN Systems, 17, 1–14.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Tsiknas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiknas, K., Stamatelos, G. TCP-BIAD for Enhancing TCP Performance in Broadband Wireless Access Networks. Wireless Pers Commun 78, 785–799 (2014). https://doi.org/10.1007/s11277-014-1783-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1783-2

Keywords

Navigation