Skip to main content
Log in

Compressed Sensing Trilinear Model-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multiple Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper addresses the problem of carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems with multiple antennas, and links CFO estimation problem in OFDM systems to the compressed sensing trilinear model. Exploiting this link, we derives a compressed sensing trilinear model-based CFO estimation algorithm. The signal model can be expressed as a trilinear model, and there exists three compressed matrices which can compress the trilinear model to be a lower dimensional one. After that, trilinear decomposition is performed for the compressed model to get the estimations of compressed data matrices, and then the CFO can be estimated through solving the sparse recovery problem via \(\ell _0\) -norm constraint. The proposed algorithm has much better CFO estimation performance than ESPRIT method, and performs very close to the trilinear decomposition-based approach which has heavier computational burden and requires much greater storage capacity. Furthermore, our proposed algorithm can even work in condition of no virtual carrier. We derive the Cramer-Rao bound of CFO estimation for multiple antenna OFDM system. Simulation results illustrate performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.

    Article  Google Scholar 

  2. Minn, H., & Xing, S. (2005). An optimal training signal structure for frequency-offset estimation. IEEE Transactions on Communications, 53(2), 343–355.

    Article  Google Scholar 

  3. van de Beek, J., Sandell, M., & Borjesson, P. O. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45, 1800–1805.

    Article  MATH  Google Scholar 

  4. Liu, H., & Tureli, U. (1998). A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters, 2, 104–106.

    Article  Google Scholar 

  5. Tureli, U., Liu, H., & Zoltowskl, M. D. (2000). OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications, 48, 1459–1461.

    Article  Google Scholar 

  6. Yao, Y., & Giannakis, G. (2005). Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications, 53(1), 173–183.

    Article  MathSciNet  Google Scholar 

  7. Ghogho, M., & Swami, A. (2002). Blind frequency-offset estimator for OFDM systems transmitting constant-modulus symbols. IEEE Communications Letters, 6(8), 343–345.

    Article  Google Scholar 

  8. Park, B., Cheon, H., Ko, E., Kang, C., & Hong, D. (2004). A blind OFDM synchronization algorithm based on cyclic correlation. IEEE Signal Processing Letters, 11(2), 83–85.

    Article  Google Scholar 

  9. Tureli, U., Honan, P. J., & Liu, H. (2004). Low-complexity nonlinear least squares carrier offset estimator for OFDM: Identifiability, diversity and performance. IEEE Transactions on Signal Processing, 52(9), 2441–2452.

    Article  Google Scholar 

  10. Hutter, A., Hammerschmidt, J. S., de Carvalho, E., Cioffi, J. M. (2000). “Receive diversity for mobile OFDM systems”. In Proceedings of IEEE WCNC, 2000, pp. 707–712.

  11. Zhang, X., Gao, X., & Wang, D. (2010). Blind carrier frequency offset estimation for OFDM system with multiple antennas using multiple-invariance properties. Wireless Personal Communications, 53, 603–612.

    Article  Google Scholar 

  12. Zhang, Xiaofei, Lingyun, Xu, & Dazhuan, Xu. (2012). Multiple invariance MUSIC-based blind carrier frequency offset estimation for OFDM system with multi-antenna receiver. Wireless Personal Communications, 63, 319–330.

    Article  Google Scholar 

  13. Zhang, X., Gao, X., & Xu, D. (2010). Novel blind carrier frequency offset estimation for OFDM system with multiple antennas. IEEE Transactions on Wireless Communications, 9, 881–885.

    Article  Google Scholar 

  14. De Lathauwer, L. (2006). A link between the canonical decomposition in multi-linear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications, 28(3), 642–666.

    Article  MATH  MathSciNet  Google Scholar 

  15. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MATH  MathSciNet  Google Scholar 

  16. Candes, E., Romberg, J., & Tao, J. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  MathSciNet  Google Scholar 

  17. Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  18. Mallat, S. G., & Zhang, Z. F. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.

    Article  MATH  Google Scholar 

  19. Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MATH  MathSciNet  Google Scholar 

  20. Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  21. Hu, N., Ye, Z., Xu, D., & Cao, S. (2012). A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Processing, 92, 2566–2570.

    Article  Google Scholar 

  22. Sidiropoulos, N. D., & Kyrillidis, A. (2012). Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11), 757–760.

    Article  Google Scholar 

  23. Zhang, X., & Yu, H. (2013). Blind signal detection for uniform rectangular array via compressive sensing trilinear model. Advanced Materials Research, 756–759, 660.

    Google Scholar 

  24. Cao, R., Zhang, X., & Chen, W. Compressed sensing parallel factor analysis-based joint angle and Doppler frequency estimation for monostatic multiple-input-multiple-output radar, IET Radar, Sonar & Navigation. doi:10.1049/iet-rsn.2013.0242.

  25. Georg, T., & H. Franz (2008). A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots. In Proceedings of IEEE ICASSP-08 (pp. 2885–2888). Las Vegas, NV.

  26. Peng, Y. X., Yang, X., Zhang, X. F., Wang, W. B., & Wu, B. (2010). Compressed MIMO-OFDM channel estimation. In Proceedings fo IEEE Communication Technology (ICCT), Beijing Univ. of Posts & Telecommun., (pp. 1291–1294). Beijing, China.

  27. Christian, R. B., Zhou, S. L., James, C. P., & Peter, W. (2010). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing, 58(3), 1708–1720.

    Article  MathSciNet  Google Scholar 

  28. Jarvis, H., Waheed, U. B., Gil, R., & Robert, N. (2010). Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation. IEEE Transactions on Signal Processing, 56(11), 5862–5875.

    Google Scholar 

  29. Joao, G., Christian, R. B., & Antonio, S. (2011). Demodulation of underwater OFDM transmissions by time reversal and basis pursuit methods. In Wireless Conference Sustainable Wireless Technologies, 11th European (pp. 1–9). Vienna, Austria.

  30. Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95–138.

    Article  MATH  MathSciNet  Google Scholar 

  31. Bro, R., Sidiropoulos, N. D., & Giannakis, G. B. (1999). A fast least squares algorithm for separating trilinear mixtures. In Proceedings of International Workshop Independent Component Analysis and Blind Signal Separation (pp. 289–294). Aussois, France.

  32. Tomasi, G., & Bro, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis, 50, 1700–1734.

    Article  MATH  MathSciNet  Google Scholar 

  33. Vorobyov, S. A., Rong, Y., Sidiropoulos, N. D., & Gershman, A. B. (2005). Robust iterative. Fitting of multilinear models. IEEE Transactions on Signal Processing, 53(8), 2678–2689.

    Article  MathSciNet  Google Scholar 

  34. Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Signal Processing, 38, 1783–1795.

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by China NSF Grants (61371169, 61301108, 61071164), Jiangsu Planned Projects for Postdoctoral Research Funds (1201039C), China Postdoctoral Science Foundation (2012M521099, 2013M541661), Open project of Key Laboratory of modern acoustic of Ministry of Education (Nanjing University), the Aeronautical Science Foundation of China (20120152001), Research Innovation Program for College Graduates of Jiangsu Province (CXZZ13_0165), Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ13-09), Qing Lan Project, priority academic program development of Jiangsu high education institutions and the Fundamental Research Funds for the Central Universities (NZ2012010, NS2013024,kfjj130114, kfjj130115). The authors are grateful to the anonymous reviewers for their constructive comments and suggestions in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, W. & Cao, R. Compressed Sensing Trilinear Model-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multiple Antennas. Wireless Pers Commun 78, 927–941 (2014). https://doi.org/10.1007/s11277-014-1794-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1794-z

Keywords

Navigation