Skip to main content
Log in

Differential Space-Time Modulation Using DAPSK Over Rician Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper studies differential space-time modulation using diversity-encoded differential amplitude and phase shift keying (DAPSK) for the multiple-input multiple-output (MIMO) system over independent but not identically distributed (inid) time-correlated Rician fading channels. An asymptotic maximum likelihood (AML) receiver is developed for differentially detecting diversity-encoded DAPSK symbol signals by operating on two consecutive received symbol blocks sequentially. Based on Beaulieu’s convergent series, the bit error probability (BEP) upper bound is analyzed for the AML receiver over inid time-correlated Rician fading channels. Particularly, an approximate BEP upper bound of the AML receiver is also derived for inid time-invariant Rayleigh fading channels with large received signal-to-noise power ratios. By virtue of this approximate bound, a design criterion is developed to determine the appropriate diversity encoding coefficients for the proposed DAPSK MIMO system. Numerical and simulation results show that the AML receiver for diversity-encoded DAPSK is nearly optimum when the average received signal-to-noise power ratios are high and the channel is heavily correlated fading and can provide better error performance than conventional noncoherent MIMO systems when the effect of non-ideal transmit power amplification is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Notably, all entries of the transmitted symbol matrix for DUSTM using APSK-based OSTCC take value in irregular symbol constellations. However, its PAPR value is fixed by 3 dB [16].

  2. As indicated in [23], the error performance of DAPSK is highly sensitive to the amplitude ring ratio \(\mu \) in single-input multiple-output antenna systems, especially when the number of amplitude rings is large. This amplitude ring ratio parameter will be optimized in Sect. 4 through minimizing the BEP upper bound developed therein.

  3. The rows of Walsh Hadamard and discrete Fourier transform matrices can be used as the dispersion vectors in the paper.

  4. When \(\mathcal {S}\) is given, \(|x_{k}^{(i-1)}|\) and \( d_{k}=x_{k}^{(i)}/x_{k}^{(i-1)}\) that are required in the following analysis are, respectively given by \(|x_{k}^{(i-1)}|\, =\lambda \mu ^{(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\) and \(d_{k}=\mu ^{(\beta _{k}^{(a)}(a^{(i-1)}+\varDelta a)_{N}+a_{k}^{(0)})_{N}-(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\exp \{\frac{j2\pi \beta _{k}^{(p)}\varDelta b}{M}\}\) provided with predetermined \(\beta _{k}^{(a)},\, \beta _{k}^{(p)}\), and \(a_{k}^{(0)}\) for \(k\in \mathcal {Z}_{L_{t}}^{+}\).

  5. As shown in (11), \(|d_{k}|\, =\mu ^{(\beta _{k}^{(a)}(a^{(i-1)}+\varDelta a)_{N}+a_{k}^{(0)})_{N}-(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\) takes the form \(\mu ^{0}\) when \( \varDelta a=0\). When \(\varDelta a\ne 0\), it takes the form \(\mu ^{(\beta _{k}^{(a)}\varDelta a)_{N}}\) if \(|d_{k}|\, >1\) and \(\mu ^{(\beta _{k}^{(a)}\varDelta a)_{N}-N}\) if \(|d_{k}|\, <1\).

  6. For conventional DNUSTM and DUSTM techniques, each data symbol is differentially encoded into two adjacently transmitted \(L_{t}\times L_{t}\) matrices and each transmitted matrix is emitted every \(L_{t}T_{s}\) seconds. Because \(L_{t}\) encoded symbols are transmitted at each antenna in each \( L_{t}T_{s}\) seconds, all the existing techniques operating at a rate of \(R\) bits per transmit antenna per \(L_{t}T_{s}\) provide a bandwidth efficiency of \(R\) bits\(/\)sec\(/\)channel use.

  7. In the following, the initial transmitted symbol matrices used for all compared DNUSTM and DUSTM techniques are set to the identity matrix.

References

  1. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    MATH  MathSciNet  Google Scholar 

  2. Hochwald, B. M., & Marzetta, T. L. (2000). Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, 46(2), 543–564.

    MATH  MathSciNet  Google Scholar 

  3. Hassibi, B., & Hochwald, B. M. (2002). High-rate codes that are linear in space and time. IEEE Transactions on Information Theory, 48(7), 1804–1824.

    MATH  MathSciNet  Google Scholar 

  4. Yuen, C., Guan, Y. L., & Tjhung, T. T. (2008). Power-balanced orthogonal space-time block code. IEEE Transactions on Vehicular Technology, 57(5), 3304–3309.

    Google Scholar 

  5. Das, S., & Rajan, B. S. (2009). Square complex orthogonal designs with low PAPR and signaling complexity. IEEE Transactions on Wireless Communications, 8(1), 204–213.

    Google Scholar 

  6. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    MATH  Google Scholar 

  7. Belfiore, J.-C., Rekaya, G., & Viterbo, E. (2005). The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants. IEEE Transactions on Information Theory, 51(4), 1432–1436.

    MATH  MathSciNet  Google Scholar 

  8. Sethuraman, B. A., Rajan, B. S., & Shashidhar, V. (2003). Full-diversity, high-rate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49(10), 2596–2616.

    MathSciNet  Google Scholar 

  9. Hochwald, B. M., & Sweldens, W. (2000). Differential unitary space-time modulation. IEEE Transactions on Communications, 48(12), 2041–2052.

    Google Scholar 

  10. Brehler, M., & Varanasi, M. K. (2001). Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a unified analysis of coherent and noncoherent space-time receivers. IEEE Transactions on Information Theory, 47(6), 2383–2399.

    MATH  MathSciNet  Google Scholar 

  11. Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578.

    MATH  Google Scholar 

  12. Schober, R., & Lampe, L. H. J. (2002). Differential modulation diversity. IEEE Transactions on Vehicular Technology, 51(6), 1431–1444.

    Google Scholar 

  13. Tao, M. (2009). Effects of non-identical Rayleigh fading on differential unitary space-time modulation. IEEE Transactions on Communications, 57(5), 1359–1369.

    Google Scholar 

  14. Tarokh, V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, 18(7), 1169–1174.

    Google Scholar 

  15. Ganesan, G., & Stoica, P. (2002). Differential modulation using space-time block codes. IEEE Signal Processing Letters, 9(2), 57–60.

    Google Scholar 

  16. Song, A., Wang, G., Su, W., & Xia, X.-G. (2004). Unitary space-time codes from Alamouti’s scheme with APSK signals. IEEE Transactions on Wireless Communications, 3(6), 2374–2384.

    Google Scholar 

  17. Bhatnagar, M. R., Hjørungnes, A., & Song, L. (2009). Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated Rayleigh channels. IEEE Transactions on Wireless Communications, 8(8), 3985–3995.

    Google Scholar 

  18. Yu, X., Xu, D., & Bi, G. (2006). Differential space-time coding scheme using star quadrature amplitude modulation method. EURASIP Journal on Advances in Signal Processing, 2006(2006), 1–12.

    MATH  Google Scholar 

  19. Bauch, G. (2008). Bandwidth-efficient differential space-time modulation. IEEE Transactions on Vehicular Technology, 57(5), 2792–2803.

    Google Scholar 

  20. Ryu, H.-G., Park, J. S., & Park, J.-S. (2004). Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 50(4), 425–428.

    Google Scholar 

  21. Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.

    Google Scholar 

  22. Beaulieu, N. C. (1990). An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables. IEEE Transactions on Communications, 38(9), 1463–1474.

    Google Scholar 

  23. Chung, C.-D. (1997). Differentially amplitude and phase-encoded QAM for the correlated Rayleigh-fading channel with diversity reception. IEEE Transactions on Communications, 45(3), 309–321.

    Google Scholar 

  24. Huang, C.-H., & Chung, C.-D. (2012). Differentially amplitude- and phase-encoded QAM for amplify-and-forward multiple-relay systems. IEEE Transactions on Vehicular Technology, 61(5), 2054–2066.

    Google Scholar 

  25. Ma, Y., Zhang, Q. T., Schober, R., & Pasupathy, S. (2005). Diversity reception of DAPSK over generalized fading channels. IEEE Transactions on Wireless Communications, 4(4), 1834–1846.

    Google Scholar 

  26. Tjhung, T. T., Dong, X., Adachi, F., & Tan, K. H. (1997). On diversity reception of narrowband 16 star-QAM in fast Rician fading. IEEE Transactions on Vehicular Technology, 46(4), 923–932.

    Google Scholar 

  27. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  28. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  29. Larson, H. J., & Shubert, B. O. (1979). Probabilistic models in engineering sciences. New York: Wiley.

    Google Scholar 

  30. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hua Huang.

Appendix

Appendix

1.1 Derivation of (18)

Given \(\mathcal {S}\) and \(\mathcal {S}_{d},\, Q_{kl}\) in (17) is a conditionally GQS of \(U_{kl}\) and \(V_{kl}\) which have means \(\overline{U} _{kl}\triangleq \mathbb {E}\{U_{kl}|\mathcal {S},\mathcal {S}_{d}\}=\sqrt{ \gamma _{kl}/\varGamma _{kl}}\tau _{kl}(d_{k}-\widehat{d}_{k})x_{k}^{(i-1)}\) and \(\overline{V}_{kl}\triangleq \mathbb {E}\left\{ V_{kl}|\mathcal {S}, \mathcal {S}_{d}\right\} =0\) and second central moments

$$\begin{aligned} \phi _{kl}^{(1)}&\triangleq \mathbb {E}\left\{ \left. \left| U_{kl}- \overline{U}_{kl}\right| ^{2}\right| \mathcal {S},\mathcal {S} _{d}\right\} \nonumber \\&= \frac{\gamma _{kl}}{1+\varOmega _{kl}}|x_{k}^{(i-1)}|^{2}\left[ \left| d_{k}\right| ^{2}+|\widehat{d}_{k}|^{2}-2\text{ Re }\left\{ \rho _{kl}d_{k}\widehat{d}_{k}^{*}\right\} \right] +|\widehat{d} _{k}|^{2}+1 \end{aligned}$$
(25)
$$\begin{aligned} \phi _{kl}^{(2)}&\triangleq \mathbb {E}\left\{ \left. \left| V_{kl}- \overline{V}_{kl}\right| ^{2}\right| \mathcal {S},\mathcal {S} _{d}\right\} =\frac{2\left( 1-\text{ Re }\left\{ \rho _{kl}\right\} \right) \gamma _{kl}}{1+\varOmega _{kl}}\left| d_{k}\right| ^{2}|x_{k}^{(i-1)}|^{2}+\left| d_{k}\right| ^{2}+1 \quad \quad \end{aligned}$$
(26)
$$\begin{aligned} \phi _{kl}^{(3)}&\triangleq \mathbb {E}\left\{ (U_{kl}-\overline{U} _{kl})(V_{kl}-\overline{V}_{kl})^{*}|\mathcal {S},\mathcal {S}_{d}\right\} \nonumber \\&= \frac{\gamma _{kl}|x_{k}^{(i-1)}|^{2}}{1+\varOmega _{kl}}\left[ \left( 1-\rho _{kl}\right) d_{k}+\left( 1-\rho _{kl}^{*}\right) \widehat{d}_{k}\right] d_{k}^{*}+\widehat{d}_{k}d_{k}^{*}+1. \end{aligned}$$
(27)

With reference to [27, eq. (B-5)], the conditional MGF \(\varPhi _{Q_{kl}}(s|\mathcal {S},\mathcal {S}_{d})\) is given by (18) with

$$\begin{aligned}&v_{kl}^{(1)}\triangleq \sqrt{v_{kl}^{2}+u_{kl}}-v_{kl},\quad v_{kl}^{(2)}\triangleq -\sqrt{v_{kl}^{2}+u_{kl}}-v_{kl} \end{aligned}$$
(28)
$$\begin{aligned}&v_{kl}\triangleq \frac{(1+\left| d_{k}\right| ^{2})\phi _{kl}^{(1)}-(1+|\widehat{d}_{k}|^{2})\phi _{kl}^{(2)}}{2\left( \phi _{kl}^{(1)}\phi _{kl}^{(2)}-|\phi _{kl}^{(3)}|^{2}\right) },\quad u_{kl}\triangleq \frac{(1+\left| d_{k}\right| ^{2})(1+|\widehat{d} _{k}|^{2})}{\phi _{kl}^{(1)}\phi _{kl}^{(2)}-|\phi _{kl}^{(3)}|^{2}} \end{aligned}$$
(29)
$$\begin{aligned}&\alpha _{kl}^{(1)}\triangleq \frac{\left| \overline{U}_{kl}\right| ^{2}\phi _{kl}^{(2)}}{(1+\left| d_{k}\right| ^{2})(1+|\widehat{d} _{k}|^{2})},\quad \alpha _{kl}^{(2)}\triangleq \frac{\left| \overline{U} _{kl}\right| ^{2}}{1+|\widehat{d}_{k}|^{2}}. \end{aligned}$$
(30)

Note that \(v_{kl}^{(1)}v_{kl}^{(2)}=-u_{kl}\). Using (25)–(27 ), \(\phi _{kl}^{(1)}\phi _{kl}^{(2)}-|\phi _{kl}^{(3)}|^{2}\) can be further expressed as

$$\begin{aligned} \phi _{kl}^{(1)}\phi _{kl}^{(2)}\!-\!|\phi _{kl}^{(3)}|^{2}\!=\!|d_{k}\!-\!\widehat{d} _{k}|^{2}\left[ \frac{\gamma _{kl}^{2}\left| d_{k}\right| ^{2}|x_{k}^{(i-1)}|^{4}}{\left( 1\!+\!\varOmega _{kl}\right) ^{2}}\left( 1\!-\!\left| \rho _{kl}\right| ^{2}\right) \!+\!\frac{\left( 1\!+\!\left| d_{k}\right| ^{2}\right) \gamma _{kl}}{1\!+\!\varOmega _{kl}} |x_{k}^{(i-1)}|^{2}\!+\!1\right] . \end{aligned}$$

For \(d_{k}\ne \widehat{d}_{k},\, \phi _{kl}^{(1)}\phi _{kl}^{(2)}-|\phi _{kl}^{(3)}|^{2}\) is always positive, and then \(v_{kl}^{(1)}>0\) and \( v_{kl}^{(2)}<0\) from (28).

1.2 Derivations of (23) and (24)

When \(\varOmega _{kl}=0\) and \(\rho _{kl}=1\) for all \(k\in \mathcal {Z} _{L_{t}}^{+}\) and \(l\in \mathcal {Z}_{L_{r}}^{+}\), the conditional MGF \(\varPhi _{Q}(s|\mathcal {S},\mathcal {S}_{d})\) in (18) specializes to

$$\begin{aligned} \varPhi _{Q}(s|\mathcal {S},\mathcal {S}_{d})=\prod \limits _{k=1}^{L_{t}}\prod \limits _{l=1}^{L_{r}}\frac{-u_{kl}}{\left( s-v_{kl}^{(1)}\right) \left( s-v_{kl}^{(2)}\right) } \end{aligned}$$
(31)

where \(v_{kl}\) and \(u_{kl}\) in (29) simplify, respectively to

$$\begin{aligned} v_{kl}&= \frac{\left( 1+\left| d_{k}\right| ^{2}\right) |x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}}{2\left[ 1+\left( 1+\left| d_{k}\right| ^{2}\right) |x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}\right] },\\ u_{kl}&= \frac{(1+\left| d_{k}\right| ^{2})(1+|\widehat{d}_{k}|^{2})}{|d_{k}-\widehat{d}_{k}|^{2} \left[ 1+\left( 1+\left| d_{k}\right| ^{2}\right) |x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}\right] }. \end{aligned}$$

When \(\gamma _{t}\gg 1,\, v_{kl}\) and \(u_{kl}\) can be further approximated as \(v_{kl}\approx 1/2\) and \(u_{kl}\approx (1+|\widehat{d}_{k}|^{2})/(|d_{k}- \widehat{d}_{k}|^{2}|x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t})\), and thus \(v_{kl}^{(1)}\) and \(v_{kl}^{(2)}\) in (28) are approximated as \( v_{kl}^{(1)}\approx 0\) and \(v_{kl}^{(2)}\approx -1\) for \(k\in \mathcal {Z} _{L_{t}}^{+}\) and \(l\in \mathcal {Z}_{L_{r}}^{+}\) because \(u_{kl}\) is much smaller than \(v_{kl}\) for large \(\gamma _{t}\) values. Using this approximation, \(\varPhi _{Q}\left( s|\mathcal {S},\mathcal {S}_{d}\right) \) in ( 31) can be approximated for \(\gamma _{t}\gg 1\) as

$$\begin{aligned} \varPhi _{Q}\left( s|\mathcal {S},\mathcal {S}_{d}\right) \approx \left( \prod \limits _{k=1}^{L_{t}}\prod \limits _{l=1}^{L_{r}}\frac{1+|\widehat{d} _{k}|^{2}}{|d_{k}-\widehat{d}_{k}|^{2}|x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}}\right) \left[ \frac{-1}{s(s+1)}\right] ^{L_{t}L_{r}}. \end{aligned}$$
(32)

Putting the high SNR approximation of \(\Pr \{Q<\vartheta |\mathcal {S}, \mathcal {S}_{d}\}\) in (32) into (21) yields

$$\begin{aligned}&\Pr \{Q<\vartheta |\mathcal {S},\mathcal {S}_{d}\}\approx \left\{ \begin{array}{l@{\quad }l} Res\left( \varPhi _{Q}\left( s|\mathcal {S},\mathcal {S}_{d}\right) \frac{\exp \left\{ -s\vartheta \right\} }{s},s=0,L_{t}L_{r}+1\right) , &{} \vartheta >0 \\ -Res\left( \varPhi _{Q}\left( s|\mathcal {S},\mathcal {S}_{d}\right) \frac{\exp \left\{ -s\vartheta \right\} }{s},s=-1,L_{t}L_{r}\right) , &{} \vartheta \le 0 \end{array} \right. \end{aligned}$$
(33)
$$\begin{aligned}&\quad =\left\{ \begin{array}{l@{\quad }l} \left( \prod \limits _{k=1}^{L_{t}}\prod \limits _{l=1}^{L_{r}}\frac{1+|\widehat{ d}_{k}|^{2}}{|d_{k}-\widehat{d}_{k}|^{2}|x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}}\right) \frac{(-1)^{L_{t}L_{r}}}{(L_{t}L_{r})!}\frac{ d^{L_{t}L_{r}}}{ds^{L_{t}L_{r}}}\left. \left( \frac{\exp \left\{ -s\vartheta \right\} }{(s+1)^{L_{t}L_{r}}}\right) \right| _{s=0}, &{} \vartheta >0 \\ \left( \prod \limits _{k=1}^{L_{t}}\prod \limits _{l=1}^{L_{r}}\frac{1+|\widehat{ d}_{k}|^{2}}{|d_{k}-\widehat{d}_{k}|^{2}|x_{k}^{(i-1)}|^{2}g_{k}\varGamma _{kl}\gamma _{t}}\right) \frac{(-1)^{L_{t}L_{r}+1}}{(L_{t}L_{r}-1)!}\frac{ d^{L_{t}L_{r}-1}}{ds^{L_{t}L_{r}-1}}\left. \left( \frac{\exp \left\{ -s\vartheta \right\} }{s^{L_{t}L_{r}+1}}\right) \right| _{s=-1}, &{} \vartheta \le 0 \end{array} \right. .\nonumber \\ \end{aligned}$$
(34)

Using Leibniz’s rule of differentiation in [28, eq. (0.42)], we have

$$\begin{aligned}&\frac{(-1)^{L_{t}L_{r}}}{(L_{t}L_{r})!}\frac{d^{L_{t}L_{r}}}{ds^{L_{t}L_{r}}} \left. \left( \frac{\exp \left\{ -s\vartheta \right\} }{(s+1)^{L_{t}L_{r}}} \right) \right| _{s=0}=\sum _{m=0}^{L_{t}L_{r}}\left( \begin{array}{l}{ 2L_{t}L_{r}-1-m}\\ {L_{t}L_{r}-1}\end{array}\right) \frac{\vartheta ^{m}}{m!},\quad \vartheta >0 \end{aligned}$$
(35)
$$\begin{aligned} \frac{(-1)^{L_{t}L_{r}+1}}{(L_{t}L_{r}-1)!}\frac{d^{L_{t}L_{r}-1}}{ ds^{L_{t}L_{r}-1}}\left. \left( \frac{\exp \left\{ -s\vartheta \right\} }{ s^{L_{t}L_{r}+1}}\right) \right| _{s=-1}&= \sum _{m=0}^{L_{t}L_{r}-1} \left( \begin{array}{l}{2L_{t}L_{r}-1-m}\\ {L_{t}L_{r}}\end{array}\right) \frac{\left( -\vartheta \right) ^{m}\exp \left\{ \vartheta \right\} }{m!},\nonumber \\&\quad \vartheta \le 0. \end{aligned}$$
(36)

Putting (35) and (36) into (34) results in (23) and (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CH., Chung, CD. Differential Space-Time Modulation Using DAPSK Over Rician Fading Channels. Wireless Pers Commun 78, 1021–1046 (2014). https://doi.org/10.1007/s11277-014-1799-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1799-7

Keywords

Navigation