Skip to main content
Log in

Adaptive Turbo Coded Modulation for Shallow Underwater Acoustic Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper the performance of a wireless communications system over shallow underwater acoustic channels is investigated when adaptive modulation and coding techniques with receiver diversity are used. It is assumed that the communication system experiences Ricean shadowed fading. We obtain the analytical figures of the proposed rate-adaptive transmission schemes, emphasizing in the spectral efficiency and the average bit error rate. These analytical expressions are compared to Monte-Carlo simulations corroborating the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heidemann, J., Stojanovi, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances, and challenges. Philosophical Transactions of the Royal Society (A), 370, 158–175.

    Article  Google Scholar 

  2. Akyildiz, I., Pompili, D., & Melodia, T. (2005). Underwater acoustic networks: Research challenges. Ad Hoc Networks (Elsevier), 3, 257–279.

    Google Scholar 

  3. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.

    Google Scholar 

  4. Stojanovic, M. (2008). Underwater acoustic communications: Design considerations on the physical layer. In Proceedings of IEEE/IFIP fifth annual conference on wireless on demand network systems and services, WONS 2008. Garmisch-Partenkirchen, Germany, 2008 (pp. 1–4).

  5. Stojanovic, M., Catipovic, J. A., & Proakis, J. G. (1993). Adaptive multichannel combining and equalization for underwater acoustic communications. Journal of the Acoustical Society of America, 94(3), 1621–1631.

    Google Scholar 

  6. Goldsmith, A. J., & Chua, S. (1998). Adaptive coded modulation for fading channels. IEEE Transactions on Communications, 46(5), 595–602.

    Google Scholar 

  7. Morelos-Zaragoza, R. H. (2006). The art of error correcting codes. New York: Wiley.

    Google Scholar 

  8. Ruiz-Vega, F., Clemente, M., Otero, P., & Paris, J. (2012). Ricean shadowed statistical characterization of shallow water acoustic channels for wireless communications. In Proceedings of IEEE conference underwater communications: Channel modelling and validation, UComms, Sestri Levante, Italy.

  9. Radosevic, A., Proakis, J. G., & Stojanovic, M. (2009). Statistical characterization and capacity of shallow water acoustic channels. In Proceedings IEEE Oceans Europe Conference, Bremen, Germany.

  10. Karasalo, I., Öberg, T., Nilsson, B., & Ivanssonal, S. (2013). A single-carrier turbo-coded system for underwater communications. IEEE Journal of Oceanic Engineering, 38(4), 666–677.

  11. Yang, T. C. (2007). A study of spatial processing gain in underwater acoustic communications. IEEE Journal of Oceanic Engineering, 32(3), 689–709.

    Google Scholar 

  12. Alfano, G., & Maio, A. D. (2007). Sum of squared shadowed-rice random variables and its application to communications systems performance prediction. IEEE Transactions on Wireless Communications, 6(10), 3540–3545.

    Google Scholar 

  13. Vishwanath, S., & Goldsmith, A. (2003). Adaptive turbo-coded modulation for flat-fading channels. IEEE Transactions on Communications, 51(6), 964–972.

    Google Scholar 

  14. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  15. Preisig, J. (2005). Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. The Journal of Acoustical Society of America, 118(1), 263–278.

    Google Scholar 

  16. Chung, S. T., & Goldsmith, A. J. (2001). Degrees of freedom in adaptive modulation: A unified view. IEEE Transactions on Communications, 48(9), 1561–1571.

    Google Scholar 

  17. Kim, I.-M. (2006). Exact BER analysis of OSTBCs in spatially correlated MIMO channels. IEEE Transactions on Communications, 54(8), 1365–1373.

    Google Scholar 

  18. Clemente, M. C., Ruiz-Vega, F., Otero, P., & Paris, F. J. (2011). Closed-form analysis of adapted coded modulation over ricean shadowed fading channels. Electronics Letters, 47(3), 217–218.

    Google Scholar 

  19. Lombardo, P., Fedele, G., & Rao, M. M. (1999). MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications, 47(1), 44–52.

    Google Scholar 

  20. Duong, D. V., Øien, G. E., & Hole, K. J. (2006). Adaptive coded modulation with receive antenna diversity and imperfect channel knowledge at receiver and transmitter. IEEE Transactions on Vehicular Technology, 55(2), 458–465.

    Google Scholar 

  21. Wang, C. C. (1998). On the performance of turbo codes. In Proceedings of IEEE military communications conference, MILCOM’98 (pp. 987–9920).

  22. Barbulescu, A. S., Farrel, W., Gray, P., & Rice, M. (1997). Bandwith efficient turbo coding fot high speed mobile satellite communications. In Proceedings of IEEE international symposium turbo codes and related topics (pp. 119–126). Brest, France.

  23. Goff, S. L. , Glavieux, A., & Berrou, C. (1994) Turbo-codes and high spectral efficiency modulation. In Proceedings of IEEE international conference communications (pp. 645–649).

  24. Robertson, P., & WÖrz, T. (1998). Bandwidth-efficient turbo trellis-coded modulation using punctured component codes. IEEE Journal on Selected Areas in Communications, 16(2), 206–218.

  25. Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    MATH  MathSciNet  Google Scholar 

  26. Alouini, M. S., & Goldsmith, A. J. (2000). Adaptive modulation over Nakagami fading channels. Wireless Personal Communications, 13, 119–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ruiz-Vega.

Appendices

Appendix 1: Cumulative Distribution Function

The definition of the CDF is

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma ) = \frac{1}{2\pi i}\oint _{c-i \infty }^{c+i \infty } \mathcal {L}[{\mathcal {F}}_{\gamma _t}(\gamma );s]\,e^{s\gamma }\,ds. \end{aligned}$$
(15)

The property \(\mathcal {L}[{\mathcal {F}}_R(r);s]= \mathcal {L}[f_R(r);s]/s\) of the Laplace transform is used to obtain

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma )= \frac{1}{2\pi i}\oint _{c-i \infty }^{c+i \infty } \frac{1}{s}\, \mathcal {L}[f_{\gamma _t}(\gamma );s]\,e^{s\gamma }\,ds. \end{aligned}$$
(16)

The Laplace transform of the probability density function (PDF) and the MGF are related through \({\mathcal {M}}_R(-s)=\mathcal {L}[f_R(r);s]\), which gives the sought expression

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma )=\frac{1}{2\pi i} \oint _{c-i \infty }^{c+i \infty } \frac{1}{s}\, {\mathcal {M}}_{\gamma _t}(-s)\,e^{s\gamma }\,ds. \end{aligned}$$
(17)

Let’s use the function \(\Xi (s)\) in the integrand of (17)

$$\begin{aligned} \Xi (s)=\frac{1}{s}\,{\mathcal {M}}_{\gamma _t}(-s)\,e^{s\gamma }. \end{aligned}$$
(18)

When (4) is used in (18), we have

$$\begin{aligned} \Xi (s)=\frac{1}{s}\left( 1+\frac{s}{x_0} \right) ^{\!\!(m-1)L}\prod _{\ell =1}^L\!\left( 1+\frac{s}{x_\ell } \right) ^{-m}\!\!e^{s\gamma }. \end{aligned}$$
(19)

The function \(\Xi (s)\) has a simple pole at \(p_0=0\), a zero at \(z_0=-x_0\) along with \(L\) poles at \(\{p_k\}_{k=1}^{L}=-\{x_\ell \}_{\ell =1}^L\) of different orders, according to the integer value \(m \ge 0\) and the number \(L\) of channels.

We need to solve the integral in (17). The singularities of \(\Xi (s)\) and the chosen integral contour are shown in Fig. 11

Fig. 11
figure 11

Singularities of function \(\Xi (s)\) and the integration path

Since the inequality

$$\begin{aligned} \left| \int _{{\mathcal {P}}_\infty }\Xi (s)\,ds\right| \le \frac{c}{R}\;\prod _{\ell =1}^L\left( \frac{R}{x_\ell } \right) ^{-m} \end{aligned}$$
(20)

is satisfied for a value of the radius \(R\) (shown in Fig. 11) large enough and an appropriate constant \(c\), it is true that

$$\begin{aligned} \lim _{R\rightarrow \infty }\left| \int _{{\mathcal {P}}_\infty }\!\!\Xi (s)\,ds\right| \le \lim _{R\rightarrow \infty } 2\pi R \Bigl |\,\Xi (s)|_{{\mathcal {P}}_\infty }\Bigr | =0. \end{aligned}$$
(21)

Cauchy’s theorem allows the CDF to be written as

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma )&= \frac{1}{2\pi i}\oint _{\varepsilon -i \infty }^{\varepsilon +i \infty }\Xi (s)\,ds\nonumber \\&= \frac{1}{2\pi i}\sum _{k=1}^{L}\oint _{{\mathcal {C}}(p_k)}\!\!\Xi (s)\,ds -\frac{1}{2\pi i}\lim _{R\rightarrow \infty }\int _{{\mathcal {P}}_\infty }\!\!\Xi (s)\,ds, \end{aligned}$$
(22)

where \(\varepsilon >0\). Eventually, the residue theorem allows the CDF to be calculated as the sum of the residues of the function \(\Xi (s)\) at the pole at \(p_0=0\) and the \(L\) poles at \(\{p_k\}_{k=1}^{L}=-\{x_\ell \}_{\ell =1}^L\), that is,

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma )=\sum _{r=\,0}^{L} \text{ Res }\,[\,\Xi (s);p_r]. \end{aligned}$$
(23)

We obtain

$$\begin{aligned} {\mathcal {F}}_{\gamma _t}(\gamma )&= (x_0)^{-(m-1)L}\prod \limits _{\ell =1}^L \left( x_{\ell } \right) ^m \left[ (x_0+s)^{(m-1)L}\prod \limits _{\ell =1}^{L}(x_{\ell }+s)^{-m}e^{s\gamma } \Biggl |_{s\,=\,0} \!\! \right. \nonumber \\&\quad + \sum _{k=1}^{L}\frac{1}{(m-1)!} \, \frac{\partial ^{\,m-1}}{\partial s^{\,m-1}}\Biggl |_{s\,=\,-x_k} \!\! \left( \frac{1}{s}(x_0+s)^{(m-1)L}.\left. \!\!\! \prod \limits _{\ell =1; \,\ell \not = k}^{L}(x_{\ell }+s)^{-m}e^{s\gamma }\right) \right] \!.\nonumber \\ \end{aligned}$$
(24)

Appendix 2: Complementary Moment Generating Function

We need to calculate the complementary MGF of Eq. (8) for \(\gamma _t\). The Laplace transform and its properties are use to arrive to

$$\begin{aligned} {\mathcal {G}}_{\gamma _t}(s;\zeta )&= \frac{1}{2\pi i}\oint _{c-i \infty }^{c+i \infty } \mathcal {L}[{\mathcal {G}}_{\gamma _t}(s;\zeta );p]\,e^{p\,\zeta }\,dp \nonumber \\&= \frac{1}{2\pi i}\oint _{c-i \infty }^{c+i \infty } \frac{1}{p}\, {\mathcal {M}}_{\gamma _t}(s-p)\,e^{p\,\zeta }\,dp\,. \end{aligned}$$
(25)

Let’s define the new function in the integrand of (25)

$$\begin{aligned} \Xi (p,s)&= \frac{1}{p}\,{\mathcal {M}}_{\gamma _t}(s-p)\,e^{p\,\zeta } \nonumber \\&= \frac{e^{p\,\zeta }}{p}\, \left( 1-\frac{s-p}{x_0} \right) ^{\!(m-1)L} \prod \limits _{\ell =1}^L\left( 1-\frac{s-p}{x_\ell } \right) ^{-m}. \end{aligned}$$
(26)

The new function \(\Xi (p,s)\) has, relative to variable \(p\), a simple pole at \(p_0=0\), a simple or multiple zero at \(z_0=-(x_0-s)\), and \(L\) poles at \(\{p_k\}_{k=1}^{L}=-(\{x_\ell \}_{\ell =1}^{L}-s)\) of different orders, according to the integer value \(m \ge 0\) and the number \(L\) of channels. Compared to (19), a shift of value \(s\) of the zero and multiple poles positions can be observed. Now again, when Cauchy’s and residues theorems are used the function \({\mathcal {G}}_\gamma (s;\zeta )\) is calculated as the sum of the residues of \(\Xi (p,s)\) to obtain

$$\begin{aligned}&{\mathcal {G}}_{\gamma _t}(s;\zeta ) = (x_0) ^{-(m-1)L} \prod \limits _{\ell =1}^L\left( x_{\ell } \right) ^m \! \left[ (x_0-s+p)^{(m-1)L} \prod \limits _{\ell =1}^{L}(x_{\ell }-s+p)^{-m}e^{p\,\zeta }\Biggl |_{p\,=\,0} \right. \nonumber \\&\quad +\sum _{k=1}^{L}\!\frac{1}{(m-1)!}\; \frac{\partial ^{\,m-1}}{\partial p^{\,m-1}} \Biggl |_{p\,=\,-(x_k-s)} \left. \!\!\! \left( \frac{1}{p}\,(x_0-s+p)^{(m-1)L} \!\!\!\prod \limits _{\ell =1; \ell \not = k}^{L} \!\!\!\!(x_{\ell }-s+p)^{-m}e^{p\,\zeta }\right) \!\! \right] .\nonumber \\ \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemente, M.C., Ruiz-Vega, F., Otero, P. et al. Adaptive Turbo Coded Modulation for Shallow Underwater Acoustic Communications. Wireless Pers Commun 78, 1231–1248 (2014). https://doi.org/10.1007/s11277-014-1814-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1814-z

Keywords

Navigation