Skip to main content
Log in

A New Robust Objective Function Based on Maximum Negentropy Approximation in Independent Component Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As an important factor in the fast fixed-point algorithm of independent component analysis (ICA), robustness has a significant influence on the separate performance of ICA. However, the traditional objective functions used in fast fixed-point algorithm of ICA will be invalid in separating the original signals when the outliers mix in signals. In this paper, we introduce a new robust objective function based on the Negentropy maximization. With second order approximation with Maclaurin expansion, the proposed function enables the estimation of individual independent components. In addition, it guarantees the separate performance of ICA that the original signals whether mix with outliers. Furthermore, combined with the proposed objective function, the fast fixed-point algorithm of ICA is reliable in the scenario of the signals mix with outliers. Simulation results show that the separate performance of proposed objection function is superior to the traditional objective functions as the outliers appear in the original signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breuer, L., Dammers, J., Roberts, T. P. L., & Shah, N. J. (2014). A constrained ICA approach for real-time cardiac artifact rejection in magnetoencephalography. IEEE Transactions on Biomedical Engineering, 61(2), 405–414.

    Article  Google Scholar 

  2. Li, X.-L., & Adalı, T. (2013). Noncircular complex ICA by generalized householder reflections. IEEE Transactions on Signal Processing, 61(24), 6423–6430.

    Article  MathSciNet  Google Scholar 

  3. Nafta, A., Johannisson, P., & Shtaif, M. (2013). Blind equalization in optical communications using independent component analysis. Journal of Lightwave Technology, 31(12), 2043–2049.

    Article  Google Scholar 

  4. Ma, X., Zhang, H., Zhao, X., Yao, L., & Long, Z. (2013). Semi-blind independent component analysis of fMRI based on real-time fMRI system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 416–426.

    Article  Google Scholar 

  5. Mehrabian, H., Chopra, R., & Martel, A. L. (2013). Calculation of intravascular signal in dynamic contrast enhanced-MRI using adaptive complex independent component analysis. IEEE Transactions on Medical Imaging, 32(4), 699–710.

    Article  Google Scholar 

  6. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  7. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  8. Hyvärinen, A., & OJA, E. (1997). A fast fixed-point algorithm for independent component analysis [J]. Neural Computation, 9(7), 1483–1492.

    Article  Google Scholar 

  9. Hyvärinen, A., Karhunen, J., & Oja, E. (2001). independent component analysis. New York: Wiley.

    Book  Google Scholar 

  10. Cook, D., Buja, A., & Cabrera, J. (1993). Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics, 2(3), 225–250.

    Article  MathSciNet  Google Scholar 

  11. Hyvärinen, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in neural information processing systems (Vol. 10, pp. 273–279). Cambridge: MIT Press.

  12. Jones, M. C., & sibson, R. (1987). What is projection pursuit? Journal of the Royal Statistical Society Series A, 150, 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hyvärinen, A. (1999). Fast independent component analysis with noise data using Gaussian moments. In Proceedings of the international symposium on circuits and systems (pp. V57–V61).

  14. Hyvärinen, A. (1999). Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters, 6(6), 145–147.

    Article  Google Scholar 

  15. Bingham, E., & Hyvärinen, A. (2000). A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 10, 1–8.

    Article  Google Scholar 

  16. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  17. Hyvärinen, A. (1997). One unit contrast functions for independent component analysis: A statistical analysis. In Neural networks for signal processing VII (pp. 388–397), Amelia Island, FL.

  18. Huber, P. J. (1981). Robust statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  19. Amari, S., Cichocki, A., & Yang, H. H. (1996). A new learning algorithm for blind signal separation. In Advances in neural information processing systems (pp. 757–763). Cambridge, MA: MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingxing Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, P., Li, L. & Zhang, H. A New Robust Objective Function Based on Maximum Negentropy Approximation in Independent Component Analysis. Wireless Pers Commun 79, 877–890 (2014). https://doi.org/10.1007/s11277-014-1892-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1892-y

Keywords

Navigation